
FINAL REPORT

South Tahoe Public Utility District
South Y Extraction
Well Suitability
Investigation

JUNE 29, 2016

SUBMITTED BY GEI Consultants, Inc. 2868 Prospect Park Drive, Suite 400 Rancho Cordova, CA 95670

T. 916.631.4500

www.geiconsultants.com

South Y Extraction Well Suitability Investigation

South Tahoe Public Utility District Project No. 1601030

June 29, 2016


Certifications and Seals

This report and analyses were prepared by the following GEI Consultants Inc. certified hydrogeologists:

Date: 6/29/16

Christian E. Petersen – Project Manager California Certified Hydrogeologist No. 463

Date: 6/29/16

Table of Contents

Abbreviation	ns and A	cronyms	i
Executive Su	ummary		1
Chapter 1.	Intro	duction	1-1
	1.1	Purpose	1-1
	1.2	Background	
	1.3	Project Summary	1-3
Chapter 2.	Pre-F	Pilot Testing Activities	2-1
	2.1	Data Collection	
		2.1.1 Video Survey	
		2.1.2 Initial Water Quality Sampling	
		2.1.3 Water Level Measurements	
	2.2	Mechanical Cleaning	
	2.3	Step-Drawdown Aquifer Testing	
	2.4	Pre-Pilot Test Water Quality Sampling	
	2.5	Constant rate Aquifer Testing	
	2.6	Dynamic Well Profiling and Water Quality Sampling	
	2.7	Pilot Testing	2-3
Chapter 3.		lts	
	3.1	Video Logging	
	3.2	Aquifer Testing	
		3.2.1 Step-Test	
		3.2.2 24-hour Constant rate Test	
	3.3	Spinner Survey	
	3.4	Water Quality Assessment	
		3.4.1 Initial Water Quality Sampling Results	
		3.4.2 Depth Discrete Sampling	
		3.4.3 Pre-pilot Test Sampling	
		3.4.4 Pilot Testing	
Chapter 4.		Evaluation	
	4.1	Groundwater Production	
		4.1.1 Estimated Yield	
		4.1.2 Capture Zones	
		4.1.3 Groundwater Flow Rate and Travel Time	
		4.1.4 Vertical Hydraulic Conductivity Distribution	
	4.2	Groundwater Quality	
		4.2.1 Zonal Water Quality Concentrations	4-5
Chapter 5.		natives for Aquifer and Water Quality Testing	
	5.1	Increased Pumping Rate and Duration	5-1

Chapter 6.	Conc	lusions and Recommendations	6-1
•	6.1	Groundwater Quality	6-1
		6.1.1 Well #4 Static Zone Sampling	6-1
		6.1.2 Well #4 Dynamic Zone Sampling	6-1
		6.1.3 Well #4 Pre-Pilot Test Water Quality	6-1
		6.1.4 Rockwater Well	6-2
	6.2	Extraction Well Alternatives	6-2
	6.3	Site Recommendations for use of Well #4 as an Extraction Well	6-4
	6.4	Treatment Pre-Design and Cost Estimate	6-5
Chapter 7.	Refer	ences	7-1

Appendices

Appendix A.	Work Plan
Appendix B.	Field Photos
Appendix C.	Field Data Sheets
Appendix D.	Aquifer Test Data and Graphs
Appendix E.	Spinner Log and Analysis
Appendix F.	Water Quality Results
Appendix G.	Results of Dye Test
Appendix H.	Evoqua Water Technologies Quote
Appendix I.	Policy Memo 97-005, Extremely Impaired Sources
Appendix J.	Conceptualized Treatment Pre-Design and Cost Estimate for Extraction Well Alternative 3

<u>Tables</u>

Table 1-1.	Chronological Summary of Field Work	. 1-3
Table 3-1.	Summary of Well Construction Details	
Table 3-2.	Step Test Results	
Table 3-3.	Constant rate Test Results	. 3-5
Table 3-4.	Calculated Aquifer Characteristics	. 3-6
Table 3-5.	Spinner Survey Results with Static and Dynamic PCE Sampling Results	. 3-7
Table 3-6.	Static Water Quality Sample Results	. 3-8
Table 3-7.	Background Water Quality and Recommended Water Quality for UV Treatment	3-10
Table 3-8.	Results of UV Field Testing	3-11
Table 3-9.	UV Pilot Testing Results Summary	3-13
Table 4-1.	Estimated Drawdown and Pumping Water Levels for Different Pumping Durations and	b
	Pumping Rates	. 4-1
Table 4-2.	Capture Zone Distances	. 4-3
Table 4-3.	Aquifer Flow Velocity and Travel Time	. 4-4
Table 4-4.	Mass Loading Calculations	
Table 6-1.	Alternatives	. 6-3
Table 6-2.	Multi-Level Monitoring Well Benefits	. 6-5
Table 6-3.	Alternative 3 Cost Estimate	. 6-6

Figures

Figure 1-1.	Project Location	1-2
Figure 3-1.	Post-Video Survey Well #4 Details	
Figure 3-2.	Well #4 Step Test pumping Rates and Pumping Water Levels	
Figure 3-3.	Well #4 Constant Rate Test pumping Rates and Pumping Water Level	3-5
Figure 3-4.	NeoTech UV Pilot Test Unit	3-11
Figure 3-5.	Quartz Sleeve Coated with Iron Precipitate	3-12
Figure 4-1.	Capture Zone Analysis Results	4-2

J:\South Tahoe Public Utilities District\Project\1601030 South Y Project\Task 4 - Final Report\FINAL REPORT\STPUD South Y_FINAL_062916.docx

Abbreviations and Acronyms

μg/L	micrograms per liter
AOP	advanced oxidation process
CLR	Calcium, Lime & Rust Remover
CRWQCB	California Regional Water Quality Control Board
CSLT	City of South Lake Tahoe
DDW	Division of Drinking Water
District	South Tahoe Public Utility District
DWR	Department of Water Resources
EDCEMD	El Dorado County Environmental Management Division
EPA	Environmental Protection Agency
FGL	FGL Analytical Chemists
ft bgs	feet below ground surface
GAC	granular activated carbon
GEI	GEI Consultants Inc.
gpm	gallons per minute
lb/day	pounds per day
LBWC	Lukins Brothers Water Company Well
MCL	maximum contaminant level
mJ/cm ²	mill-Joules/square centimeter
mW/cm ²	mill-Watts/square centimeter
PCE	tetrachloroethylene
TDS	Total Dissolved Solids
TOC	total organic carbon
TRPA	Tahoe Regional Planning Agency
TSS	total suspended solids
UV	ultra violet light
Work Plan	Work Plan for the South Y Extraction Well Suitability Investigation

GEI Consultants Inc. (GEI) has performed an assessment of the Lukins Brothers Water Company Well (LBWC) Well #4 (Well #4) for the South Tahoe Public Utility District (District). The primary goal of the South Y Extraction Well Suitability Investigation (well assessment) was to determine the suitability of using Well #4 as an extraction well for the removal of tetrachloroethylene (PCE) in groundwater. The purpose of this report is to describe the methodology and results of this well assessment, the potential use of Well #4 as an extraction well for hydraulic containment and removal of PCE contaminated groundwater, and to provide reuse alternatives which include a pre-design recommendation for an extraction well and PCE treatment system.

Well #4 is located on a $\frac{3}{4}$ -acre parcel (APN 023-65-518) in a residential neighborhood at 843 Hazel Drive, South Lake Tahoe, El Dorado County, California. The well was drilled in 1966 using the cable-tool drilling method and constructed of 12-inch diameter steel casing with an open bottom to a depth of 118 feet below ground surface (ft bgs). Well #4 has been inactive since 1989 after concentrations of PCE above the primary maximum contaminant level (MCL) of 5 micrograms per liter (μ g/L) were detected. In 1994, Well #4 was disconnected from the LBWC water system and formally removed from service. In 2015, PCE was detected at 34 micrograms per liter (μ g/L) in water quality samples collected by the Lahontan Regional Water Quality Control Board.

The objectives of this well assessment were to: identify the primary flow paths of PCE into Well #4 based on depth-discrete water sampling and a vertical flow survey; estimate aquifer hydraulic properties by performing a constant rate aquifer test in order to delineate a capture zone(s) for the use of Well #4 as an extraction well; and conduct a water treatment pilot test to provide data necessary to develop a predesign recommendation for the removal of PCE from extracted groundwater. An inactive small community water system well (Rockwater Well) located at 787 Emerald Bay Road, approximately 1,100 feet southwest of Well #4, was used as an observation well during aquifer testing.

GEI implemented the District-approved *Work Plan for the South Y Extraction Well Suitability Investigation* (Work Plan), including initial data collection activities, from February through May 2016. These activities consisted of: (a) collecting pre-test water quality samples with HydraSleeves from three discrete depth intervals in Well #4 during non-pumping (static) conditions; (b) installing pressure transducers in Well #4 and the Rockwater Well to identify potential well interferences from neighboring pumping wells; (c) mechanical cleaning of Well #4; (d) conducting a step-drawdown aquifer test; (e) collecting pre-pilot testing baseline water quality samples; (f) conducting a 24-hour constant rate aquifer test, dynamic well profiling (spinner survey) and collecting four depth-specific groundwater samples during pumping conditions; and (g) conducting a water treatment pilot test using a high efficiency ultra violet light (UV) to decompose PCE through direct photolysis, UV advanced oxidation process (AOP) using sodium hypochlorite, and analysis of the spent granular activated carbon (GAC) media used to treat extracted groundwater for discharge compliance.

Results from analysis of field data and analytical laboratory results lead to the following conclusions: (a) in Well #4, PCE concentrations (8.6 to 39 μ g/L) increased with depth (65 feet, 85 feet, and 107 feet) under static conditions; during pumping, however, PCE concentrations were higher (47 to 55.1 μ g/L) but did not vary with depth (68 feet, 72 feet, 82 feet, and 110 feet); (b) in the Rockwater Well, PCE

concentrations (69 μ g/L) are higher than Well #4 based on a sample collected at 60 feet during static conditions; (c) the Rockwater Well is located hydraulically upgradient of Well #4 and, therefore, suggests the source of PCE contamination is located further upgradient to the south of these wells; (d) based on the general mineral and inorganic water quality results, only iron and manganese exceed their respective secondary MCLs; (e) Well #4 would be classified by the California Division of Drinking Water (DDW) as an extremely impaired source because PCE concentrations are expected to exceed 10 times the MCL of 5 μ g/L; however, DDW will work with the water supplier (utility) to permit the source for drinking water, particularly in situations where a contaminant plume needs to be mitigated through pump and treat methods; (f) PCE was not effectively removed by UV, therefore, UV/AOP is not a recommended treatment technology; (g) dye test results of the spent GAC media indicated the GAC bed life would be decreased by 30 percent, likely due to iron and manganese fouling. Pre-treatment to remove iron and manganese prior to GAC filtration is recommended.

The production rate and specific capacity encountered during the constant rate aquifer test on Well #4 were higher than anticipated and resulted in the pumping rate being limited by the discharge capacity of the test pump (170 gpm) and the treatment capacity of the onsite temporary GAC treatment system. Estimated results for capture zones based on pumping Well #4 at 400 gpm, 600 gpm and 800 gpm are provided in this report. Performing an extended confirmation test at a higher pumping rate is recommended to confirm final treatment flow and contaminant loading rates for well head treatment system design. The preliminary design is based on a PCE contaminant mass loading of 0.27 pounds per day (lbs/day) at an estimated pumping rate of 400 gpm.

Based on these conclusions and discussions with the District and LBWC, GEI developed five alternatives for pumping and treating PCE at the Well #4 location and recommends Alternatives 3 and 5. Additional information collected during the feasibility study will be used to select between these two alternatives. Alternative 3, consists of drilling a new municipal supply well at the Well #4 site that will meet all of the DDW structural well standards, permitting the well with DDW as an extremely impaired source, destroying the original Well #4 in accordance with state and county well standards, and removing the onsite hydropnuematic tank. Alternative 5 is similar to Alternative 3 but includes the construction of a shallow extraction well to remove PCE contaminated groundwater from the informally designated upper aquifer zone, TK_{z5} . Due to the requirement of a 50-foot sanitary seal, the upper TK_{z5} zone may be sealed off if Alternative 3 alone is selected, which would limit removal of PCE from this horizon and may reduce the overall pumping rate. As part of a feasibility study, we recommend that a multilevel piezometer be constructed within 100' of Well #4 so that a final determination can be made between Alternatives 3 and 5.

The Alternative 3 target production rate for the new well would be approximately 400 gpm, a significant increase to the LBWC system. The same production rate is assumed for planning purposes for both the deep and shallow wells in Alternative 5. A treatment system pre-design concept was developed for Alternative 3 that assumes the new production well will be housed in a new concrete building with a pre-fabricated metal sliding door located on the roof for pump removal; two 10,000-lb GAC vessels installed in series to allow the spent carbon in the lead vessel to be changed out while maintaining continuous operation and fully utilizing carbon capacity; and a new power panel, submersible pump and motor. The pump-to-waste will be routed to the nearby sanitary sewer for discharge during start-up. Based on an average influent PCE concentration of 39 μ g/L and the predicted carbon use rate of about 20 pounds/day, carbon replacement would occur approximately every 2.5 years. Both recommended alternatives include newly constructed well(s), it is assumed that iron and manganese levels in the new well will be consistent with water quality throughout the South Tahoe basin. Therefore, the pre-design treatment train does not include an iron and manganese treatment system.

The total construction cost estimate for Alternative 3 is approximately \$1.825 million, including a contingency of 50%. Alternative 5 with the addition of a multi-level monitoring well and shallow extraction well would add about \$400,000, including a 50% contingency. These costs do not include sampling costs, permitting or temporary treatment or disposal fees that may be needed during confirmation testing to gain approval from DDW for the operation of the new wells for extraction and drinking water sources. Annual operation and maintenance is estimated to be \$23,000 with an annualized carbon cost of \$15,000 and sampling and labor costs of \$8,000.

1.1 Purpose

GEI Consultants Inc. (GEI) has performed an assessment of the Lukins Brothers Water Company Well (LBWC) Well #4 (Well #4) for the South Tahoe Public Utility District (District). The primary goal of the South Y Extraction Well Suitability Investigation (well assessment) was to determine the suitability of using Well #4 as an extraction well for the removal of tetrachloroethylene (PCE) in groundwater. The purpose of this report is to describe the methodology and results of this well assessment; the potential use of Well #4 as an extraction well for hydraulic containment and removal of PCE contaminated groundwater, and to provide reuse alternatives which include a pre-design recommendation for an extraction well and PCE treatment system.

1.2 Background

Well #4 is located on a ³/₄-acre parcel (APN 023-65-518) in a residential neighborhood at 843 Hazel Drive, within Section 5, Township 12 North, Range 18 East, Mount Diablo Base Line Meridian in the City of South Lake Tahoe, El Dorado County, California (Figure 1-1).

Well #4 was initially constructed in 1966 and has been inactive since 1989 after elevated concentrations of PCE above the maximum contaminant level (MCL) were detected in water samples collected from this well. In 1994, Well #4 was disconnected from the LBWC water system and formally removed from service. In 2015, PCE was detected at 34 micrograms per liter (μ g/L) in water quality samples collected by the Lahontan Regional Water Quality Control Board (LRWQCB).

LBWC provided a well log that includes well construction and lithologic information for Well #4. An official California Department of Water Resources (DWR) Well Driller's Report was not found. Well #4 was drilled using the cable-tool drilling method and constructed of 12-inch diameter steel casing with an open bottom to a depth of 118 feet below ground surface (ft bgs). In 1970, the well was deepened and a 10-inch diameter steel casing liner was installed inside the 12-inch diameter steel casing from 110 ft bgs to a total depth of 174 ft bgs. Areas with perforation are noted on the well log through the following depth intervals: 43 – 63 ft bgs; 68-78 ft bgs; 105 -115 ft bgs; and 132-155 ft bgs. The well log also notes that the last 30 feet of Well #4 (144 - 174 ft bgs) was graveled back to stop sand flowing into the well. Information on the well pump was not included in the provided well log. However, the pump is believed to have been set at a depth of about 110 feet below top of casing (personal communication, Jennifer Lukins). Water production records for Well #4 were not found. However, when active, Well #4 was believed to have been a relatively low production well having a nominal yield of less than 130 gallons per minute (gpm). During water quality sampling in 2015, the well was pumped at about 30 gpm.

The Rockwater Well, is an inactive small community water system well located at 787 Emerald Bay Road (approximately 1,100 feet southwest of Well #4) and was used as an observation well during this investigation (Figure 1-1). Well information provided by the El Dorado County Environmental Management Division (EDCEMD) indicates that the Rockwater Well is constructed with nominal 8-inch diameter steel well casing to a total depth of 101 ft bgs with perforations from about 70 to 99 ft bgs. When operating, the well is believed to have produced about 30 gpm. Records indicating the pump

Figure 1-1. Project Location

setting for this well was not found. However, restrictions encountered while lowering groundwater level monitoring equipment into the well indicate that the top of the well pump is set a depth of about 65 ft bgs.

The primary objectives for the well assessment are to identify the primary flow paths of PCE into Well #4 based on depth-discrete water sampling and a vertical flow survey, and to estimate aquifer hydraulic properties by performing a constant rate-aquifer test in order to delineate a capture zone(s) for the use of Well #4 as an extraction well. The pilot test was used to provide data necessary to develop a pre-design recommendation for the removal of PCE from extracted groundwater. In accordance with the approved scope of work, GEI prepared the *Work Plan for the South Y Extraction Well Suitability Investigation* (Work Plan), dated March 16, 2016 (GEI, 2016). The Work Plan, reviewed and approved by District staff, provided guidance to GEI and our subcontractor, Carson Pump of Carson City, Nevada. A courtesy copy of this work plan was provided to the City of South Lake Tahoe (CSLT), EDCEMD, Tahoe Regional Planning Agency (TRPA) and California Regional Water Quality Control Board (CRWQCB) prior to starting field activities. A copy of this work plan is provided in Appendix A.

1.3 Project Summary

A chronological summary of field work performed is provided in Table 1-1. The detailed methodology used for water quality sampling, the aquifer testing and pilot testing is provided in the Work Plan (Appendix A). The pre-pilot testing activities are presented in Section 2.0 and the investigation results are presented in Section 3.0. The obstruction permit issued for the project by the CSLT is included in Appendix A.

Table 1-1. Chronological Summary of F	ield Work		
Dates	Task		
2/1/2016	Kick-off Meeting and Site Visit		
2/17/2016	Video Survey and Deployed HydraSleeve Samplers		
3/3/2016	Collected Initial Water Samples from HydraSleeves		
3/16/2016	Installed Pressure Transducers in LBWC Well #4 and Rockwater Well		
3/21/2016	Received City of SLT Obstruction Permit		
3/21/2016	Removed Pressure Transducer from Well #4		
3/21to 3/22/2016	Well #4 Mechanical Cleaning		
3/23/2016	Test Pump Installation		
3/24/2016	Step-drawdown Test and Pre-Pilot Test Water Quality Sampling		
3/28/2016	Pre-Filter Water Quality Sampling		
3/28 to 3/29/16	24-Hour Constant Rate Test		
3/29/2016	Dynamic Flow Profiling and Water Quality Sampling		
3/30/2016	Pilot Test Water Quality Sampling		
5/20/2016	Demobilization and Site Clean Up		

2.1 Data Collection

2.1.1 Video Survey

A video survey of Well #4, conducted on February 17, 2016 by Carson Pump, to assess the condition of the well and to confirm the construction details provided to GEI. The video survey results were also used to select the pump setting depth for the step- and constant rate aquifer tests. The video survey results are discussed in Section 3.0.

2.1.2 Initial Water Quality Sampling

The objective of this sampling event was to characterize the pre-testing water quality at Well #4 and the Rockwater Well. The samples were analyzed by FGL Analytical Chemists (FGL) of Stockton, California for VOC's and BSK Associates Engineers & Laboratories (BSK) of Fresno, California for total organic carbon (TOC). Field parameters consisting of temperature, pH and electrical conductivity were measured during sample collection. HydraSleeve passive samplers (Hydrasleeves) were deployed in Well #4 on February 17, 2016 after the video survey was conducted. The approximately 7-foot long HydraSleeves remained in the well until March 3, 2016 prior to the collection of samples to allow the water quality in the well to equilibrate after fresh water was added to the well for a clear video survey. To collect adequate volume for each sample, two HydraSleeves were placed in tandem at three target intervals, 65 to 58 feet bgs, 78 to 85 feet bgs, and 100 to 107 feet bgs.

On February 17, 2016, one HydraSleeve was also deployed in the Rockwater Well at a depth of 60 to 63 feet bgs. A sample collected on March 3, 2016 was analyzed for VOC's by FGL. Appendix B contains field photographs of the equipment used during the project.

2.1.3 Water Level Measurements

On March 16, 2016, pressure transducers were installed in Well #4 and the Rockwater Well. The transducers were used to measure the depth to groundwater level and identify any potential well interferences from neighboring pumping wells.

2.2 Mechanical Cleaning

On March 21, 2016, Carson Pump began the mechanical cleaning of Well #4. Mechanical well cleaning consisted of using a wire-brush to remove any materials plugging the well casing liner perforations to improve well performance. Carson Pump spent a total of 8 hours on March 21 and March 22, 2016 to brush the louvered casing liner. A bailer was used to remove any sediment and debris accumulated from the bottom of the well at 135 ft bgs. Total sounding of the well confirmed that a very minor volume of debris and material were generated by brushing and bailing was conducted briefly to remove sediment to 135 ft bgs. Pump development was not conducted immediately following mechanical cleaning.

2.3 Step-Drawdown Aquifer Testing

On March 23, 2016, Carson Pump installed a Goulds Model 5CHC020 (8 stage) submersible pump mated to a Franklin 20 horsepower motor in Well #4, with the intake set at 110 ft bgs. With the lack of historical information on pumping rates and associated drawdown, the pump was set in the blank section of casing just above the open-borehole portion of the well. A temporary 1-inch diameter PVC sounding tube was installed to 105 feet bgs for collecting water level measurements. During the step-drawdown test, the pumping rate, system pressure, select field water quality parameters and pumping water levels were measured and recorded.

After the step-test was completed Carson Pump was directed to raise the pump from 110 feet bgs to 47 feet bgs to gather better data during the spinner survey that would be performed as part of the constant rate test. The curve for the temporary submersible pump used for aquifer testing is provided in Appendix A. The water was discharged to the sanitary sewer after approval and under supervision of District staff. The discharged water passed through the onsite carbon filtration vessel prior to being discharged to the sanitary sewer for removal of organic contaminants prior to discharge.

2.4 Pre-Pilot Test Water Quality Sampling

The objective of the pre-pilot test water quality sampling was to collect baseline water quality data prior to the pilot test. The data was used to finalize pilot testing plans and to assess changes in water quality under pumping conditions. The samples were collected during the step-drawdown test on March 24, 2016, by District laboratory personnel. The samples were transported to the District lab for delivery to the analytical laboratory under District chain-of-custody for analyses of the following parameters: VOCs (EPA Method 524.2), TOC (SM 5310C) and Metals (USEPA 200.7/200.8). Appendix C contains the field data sheets.

2.5 Constant rate Aquifer Testing

A 24-hour constant rate aquifer test was conducted on Well #4 during March 28 and March 29, 2016. The test was conducted at a pumping rate of 100 gpm for the initial 1,184 minutes of pumping time. After 1,184 minutes, the pumping rate was increased to about 170 gpm for the remaining 261 minutes of the test. The increased pumping rate was needed to provide sufficient flow that could be readily measured using the spinner tool for dynamic well profiling. This rate increase was approved by the District Hydrogeologist, prior to changing the pumping rate.

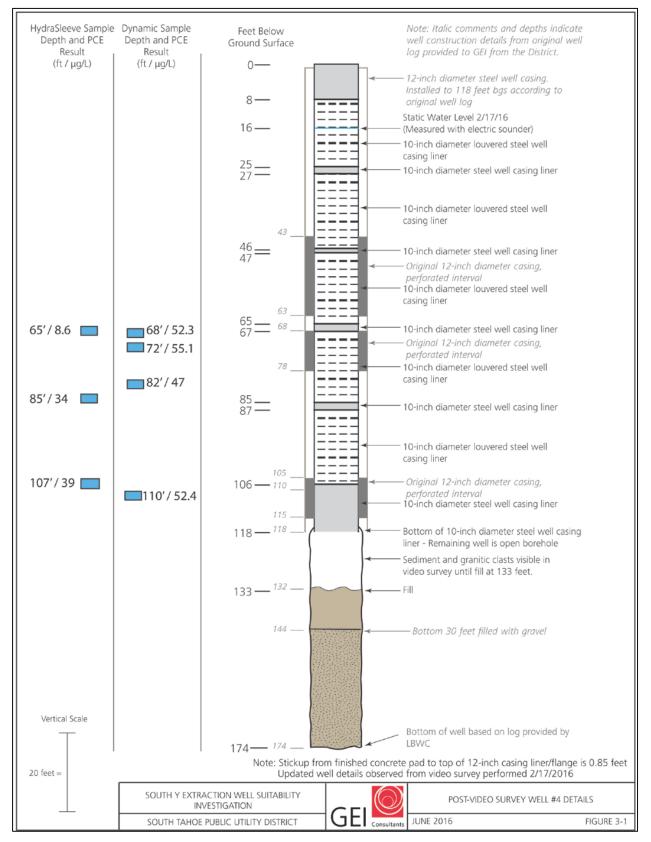
2.6 Dynamic Well Profiling and Water Quality Sampling

The objective of the dynamic well profiling (spinner survey) and collection of groundwater samples was to identify and quantify the flow contribution to Well #4 with depth and the corresponding contribution of PCE to the well. Samples were collected at 68 ft bgs, 72 ft bgs, 82 ft bgs and 110 ft bgs and were analyzed by FGL for VOC's (EPA 524.2). The results of the water quality analysis are illustrated on Figure 3-1. The spinner survey was conducted by Pacific Surveys, LLC (Pacific Survey) of Claremont, California with the use of a 3-inch diameter access pipe in the well extending to a depth of about 63 feet bgs. This pipe allowed the spinner tool to safely pass the pump intake that was set a depth of 47 ft bgs. Pacific Survey was not willing to lower the spinner tool below a depth of about 115 ft bgs into the openhole portion of the well below the bottom of the 12-inch well casing. This limited the actual depth interval surveyed by this profile from 63 to 115 ft bgs. Given these limitations, flow interpretations from this profile are deemed to be possible.

2.7 Pilot Testing

GEI conducted a water treatment pilot test at Well #4 using a high efficiency ultra violet light (UV) to decompose PCE through direct photolysis, and UV advanced oxidation process (AOP) using sodium hypochlorite. Traditionally, UV/AOP systems are costly and space prohibitive. NeoTech Aqua Solutions offers a High-Efficiency UV system which significantly reduces space requirements and operational costs by up to 90% compared to standard UV systems. The potential cost and operating efficiency made UV/AOP a technology of interest. Additional, testing was conducted on the spent GAC media used for discharge compliance.

GAC is an established best available technology for removing VOCs from groundwater. Since it has been proven to be effective, it served two purposes during the pilot test. First, to meet sanitary sewer discharge requirements during the aquifer tests and second, for efficiency in pilot testing with the spent carbon analyzed to determine treatment efficiency.


3.1 Video Logging

The well video showed the actual well construction of Well #4 differed from the well construction indicated in the provided well log. The 10-inch diameter well casing liner extended from the top of casing to a depth of 118 ft bgs. The bottom of the 10-inch well casing liner opened to an open borehole that extended to a depth of at least 133 ft bgs, before fill was encountered, ending the video survey. As well casing was not observed below 118 ft bgs, it is likely that the 10-inch well casing liner never extended below this bottom depth. Video log observations suggest that the gravel noted in the well log was used to fill the bottom 30 feet of the open borehole, below the bottom of the 10-inch well casing liner. Information on the construction and condition of the 12-inch well casing could not be gleaned from the video survey. However, the bottom of the 10-inch well casing liner corresponds to the bottom depth of the 12-inch well casing as noted in the provided well log.

The 10-inch well casing liner appeared to be in good condition with a relatively small amount of tubercles present on the casing. Louvered perforations extended from 8 ft bgs to about 106 ft bgs and appeared to be approximately 50% open to a depth of about 90 ft bgs. Below 94 ft bgs, biological growth and scaling on the louvers and casing liner increased and the louvers were estimated to be less than 20% open.

As noted above, Well #4 was completed with an open borehole below a depth of 118 ft bgs. Inspection of the well video shows gravel and pebbles containing granitic clasts exposed along the open borehole wall to a depth of at least 133 ft bgs. Table 3-1 provides a comparison of well descriptions for the Well #4 from the well log and from the video survey. Figure 3-1 shows the well diagram developed using the results of the video survey. Field notes from the video survey are provided in Appendix C.

Table 3-1. Summary of V	Vell Construction Details					
	Description					
Well Detail	Wel	Rockwater Well				
	Well Log	Video Survey 2/17/16	Well Log			
Total Well Depth	174 feet bgs	Unknown - Fill encountered 133 feet bgs	101 feet bgs			
Casing Material	Steel	Steel	Steel			
Casing Diameter	12-inch: -0.85 - 118 feet bgs 10-inch: 110 - 174 feet bgs	12-inch: -0.85 – 118 ft bgs 10-inch: -0.8 - 118 ft bgs	6-inch			
Perforation Type	Unknown	Louvered	Unknown			
Perforated Intervals	43 - 63 feet bgs 68 - 78 feet bgs 105 - 115 feet bgs 132 - 155 feet bgs	8 - 25 feet bgs 27 - 45 feet bgs 47 - 65 feet bgs 67 - 85 feet bgs 87 - 106 feet bgs	70 - 99 feet bgs			

Figure 3-1. Post-Video Survey Well #4 Details

3.2 Aquifer Testing

As indicated in Section 1.1, Well #4 was expected to have a relatively low nominal capacity of less than 130 gpm. Based on this information, pumping equipment selected for aquifer testing had a discharge capacity of about 100 gpm at 130 feet of total dynamic head. The selected granular activated carbon (GAC) filter used for well head treatment was sized accordingly to accommodate flows up to 100 gpm. Using this equipment, a 4-hour step-test was planned ranging from about 50 to 165 gpm to determine an appropriate pumping rate for the 24-hour constant rate test. Pumping from the step-test was also intended to remove any remaining debris and accumulated sediment from mechanical well cleaning. During aquifer testing, sustainable pumping rates from Well #4 were greater than anticipated and the work plan was adjusted to accommodate aquifer testing performed at higher pumping rates with the equipment available in the field.

3.2.1 Step-Test

The step-test was performed on March 24, 2016 with the test pump set at a depth of 110 ft btoc and consisted of three approximately 30-minute steps with progressively higher pumping rates at about 100 gpm; 140 gpm; and 170 gpm. At approximately 40-minutes into the step test, pre-pilot test water quality samples were collected by District lab personnel. A plot showing pumping water levels measured during the step-test is provided below in Figure 3-2.

Inspection of Table 3-2 shows that the specific capacity generally declined as discharge increased in Well #4. Using these results, the constant rate test could have been performed at pumping rates ranging from between 200 and 400 gpm. However, given the discharge limitations of the test pump and the treatment limitations of the LGAC filter, the District elected to perform the constant rate test at 100 gpm.

3.2.2 24-hour Constant rate Test

The constant rate test was performed on March 28, 2016 with the test pump set at a depth of 110 ft btoc and consisted of an approximately 24-hour pumping test at about 100 gpm. As indicated in Section 2.5, after 1,184 minutes of pumping at 100 gpm; the pumping rate was increased to 170 gpm for the remaining 261 minutes of the test to facilitate the spinner survey. A plot showing pumping rates and pumping water level measured during the constant rate test is provided below in Figure 3-3.

Aquifer Characteristics Calculations

Transmissivity

The transmissivity was estimated using water level measurements collected during the recovery period after the test-pump was turned off. Data were collected frequently for the first 90-minutes of the recovery period and another measurement was collected 1,100 minutes after the pump was shut-off. To estimate aquifer properties, the data were analyzed using the Theis Recovery Method (Theis, 1935) using the Aquifer Test Pro software. The results of this analysis include the quantification of aquifer properties presented on Table 3-4. Since the pumping rate was changed near the end of the constant test; only the recovery data were used for the analysis.

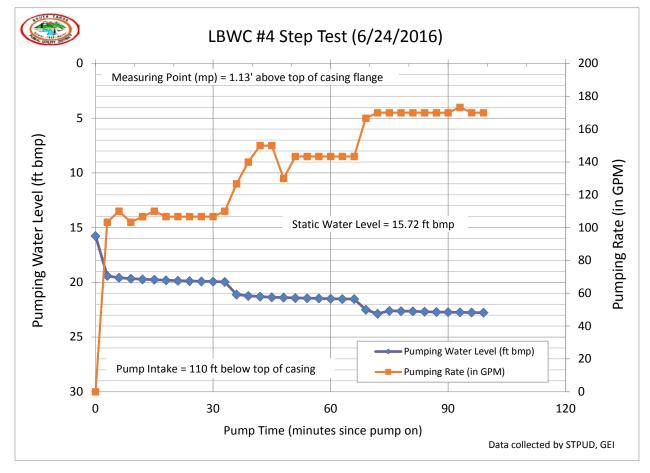


Figure 3-2. Well #4 Step Test pumping Rates and Pumping Water Levels

Specific capacity information derived from the step-test are provided below on Table 3-2.

Table 3-2. Step Test Results						
Production Rate (gpm)	Step Duration (minutes)	Drawdown (ft)	Specific Capacity (gpm/ft)			
100	33	4.20	26.19			
140	33	5.77	24.84			
170	33	7.01	24.25			

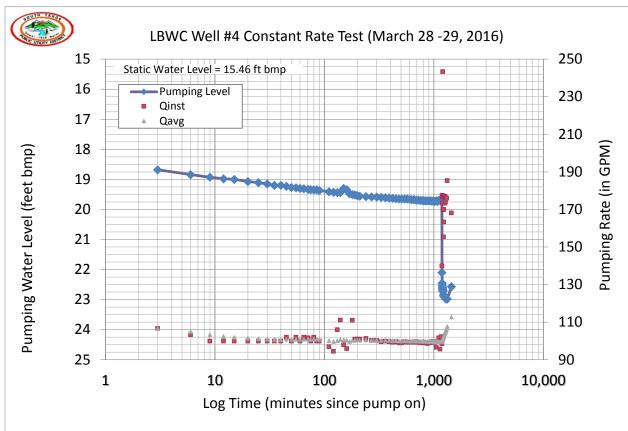


Figure 3-3. Well #4 Constant Rate Test pumping Rates and Pumping Water Level

The pumping water level, measured drawdown and calculated specific capacities at these two pumping rates are presented below in Table 3-3.

Table 3-3. Con	stant rate Test Res	ults		
Production Rate (gpm)	Pumping Duration (minutes)	Pumping Water Level (ft bmp)	Drawdown (ft)	Specific Capacity (gpm/ft)
100	1,184	19.71	4.39	22.69
170	1,445 (261 min @ 170 gpm)	22.57	7.25	15.55

Note: Static Water Level at beginning of test: 15.46 feet bmp.

Water level measurements were recorded at the Rockwater Well using a pressure transducer that was installed on March 16, 2016 and measurements were gathered through the recovery period. About 0.4 feet of drawdown was observed in the Rockwater Well at the end of the 24-hour constant rate test. There was an apparent lag-time of about 55 minutes from the beginning of the constant-rate test until drawdown was observed in the Rockwater Well. The drawdown in the Rockwater Well caused by the pumping of Well #4 suggests that the aquifer is semi-confined to confined. If the aquifer were unconfined the drawdown from Well #4 would not be expected to extend so far in such a short period of time.

Storativity

Storativity is calculated using data from a nearby observation well. As the Rockwater Well is located 1,100 feet from the pumping well (Well #4) storativity could not be calculated, since it was beyond the distance considered an observation well for the Cooper-Jacob Straight-Line Method. Therefore, an estimate for storativity was generated by employing the Theis drawdown method to back-calculate a storativity value from the estimated transmissivity derived from the recovery data and the drawdown observed from the constant rate test.

Storativity was estimated in an iterative process until the calculated drawdown using the Theis equation matched the drawdown observed during the constant-rate test after 1,184 minutes of pumping at 100 gpm which was 4.39 feet. Using this method 4.38 feet of drawdown was calculated using a storativity of 0.05, indicating that the aquifer is semi-confined which agrees with data observed by the District in other nearby wells. Appendix D contains aquifer test data and graphs.

To check this estimate, the storativity value of 0.05 was used in the Theis equation to calculate the drawdown at the end of the constant rate test at a pumping rate of 170 gpm. The observed drawdown at the end of the constant rate test was 7.25 feet and the calculated drawdown was 7.52 feet. The difference between the observed and calculated drawdown is 3.5%, indicating the estimated storativity is slightly conservative and estimated drawdowns for different pumping rates and durations may be slightly greater than actually observed.

Table 3-4. Calculated Aquifer Characteristics						
Aquifer Characteristics (TK $_{z4}$ and TK $_{z5}$ combined)						
Saturated Thickness (ft)Average Hydraulic Conductivity (ft/day)Transmissivity (T) (gpd/ft)Storativity (unitles)						
102	47.7	36,400	0.05			

3.3 Spinner Survey

The initial spinner survey run was performed near the end of the constant rate test after 1,100 minutes of pumping at 100 gpm. A second pass was performed at an increased line speed and the operator from Pacific Surveys indicated that the 100 gpm pumping rate was inadequate for the collection of reliable flow data. At 1,184 minutes, the pumping rate was increased to 170 gpm, through the remaining 261 minutes of the constant rate test. Additional spinner runs were then completed and the results indicated the depths at which the majority of the flow was entering the well.

Based on the spinner survey data observed in the field, four depths for discrete samples were chosen. Samples were collected by Pacific Surveys using their depth discrete sampling tool at 68 ft bgs, 72 feet bgs, 82 ft bgs and 110 ft bgs. These depths were chosen to collect water quality samples from: the top of the surveyed well interval (68 foot sample); from the bottom of the surveyed well interval (110 foot sample); from a portion of the original perforations (72 foot sample); and from below the uppermost well screen interval (82 foot sample). These water quality samples were analyzed for VOC (EPA 524); results from which are presented in Table 3-5. Appendix A contains Pacific Surveys literature regarding the spinner tool and discrete sampling tools. Following the survey, Pacific Surveys provided an analysis of the spinner survey data that included estimations of flow intervals that were based on the depths at which samples were collected. Pacific Surveys divided the flow intervals based on the louvers beginning at 8 feet bgs; but did not account for pumping water level during the constant rate test (23 ft bgs). The results of the spinner data were subsequently reevaluated using the pumping water level adjusted flow intervals which are presented in Table 3-5. The spinner log and analyses from Pacific Surveys are provided in Appendix E.

Table 3-5	Table 3-5. Spinner Survey Results with Static and Dynamic PCE Sampling Results							
HydraSleeve Samples		Dynamic Flow Samples			Flow		Percentage	Aquifer
Depth (feet)	Result (µg/L)	Depth (feet)	Result (µg/L)	Flow Interval	(gpm)	GPM/Ft	of Total Flow	Zone
65	8.6	68	52.3	42 -75	64.3	1.9	38%	TK _{z5}
		72	55.1	42-75	04.5	1.5	5078	11725
85	34	82	47.0	75 -106	13.4	0.4	8%	None
107	39	110	52.4	106 -175	92.6	1.3	54%	TK _{z4}

Note: -- = Not Analyzed

The total flow during the spinner survey was 170 gpm. Using the spinner data it is estimated that approximately 54% of the total flow (93 gpm) was from the open borehole below the cased portion of the well. Approximately 38% of the total flow (64 gpm) was from above the top of the surveyed well interval. Therefore, only 8% of the total flow (13 gpm) was directly from the surveyed well interval (75 - 106 feet).

Based on interpretative cross sections provided by the District, the two uppermost aquifer zones recognized through the South Y Area, are informally designated TK_{z4} and TK_{z5} . At Well #4, TK_{z5} is the uppermost water-bearing zone located from 42-75 feet bgs and TK_{z4} is the deeper water-bearing zone located from 106-175 feet. Table 3-5 also contains the PCE results from the initial water quality sampling (static) and from the dynamic flow samples collected during the spinner survey. The samples that were collected using HydraSleeves (static samples) had increasing PCE concentrations with depth. The dynamic flow samples collected during the constant rate test all had higher PCE results than the static samples. The results from the dynamic sampling indicated the shallowest and deepest samples were about the same.

With more than 50% of the total flow coming from the open borehole portion of the well we assumed that the entire length of the open hole portion of Well #4 consists of aquifer zone TK_{z4} . However, due to the limited well spinner survey interval, the presence of the 10-inch louvered well casing liner, and the relatively uniform PCE concentrations detected in the dynamic depth discrete samples, it is difficult to discern with any reasonable certainty, the primary flow path through which this contaminate is entering this well.

3.4 Water Quality Assessment

3.4.1 Initial Water Quality Sampling Results

Samples were collected from the Well #4 and the Rockwater Well to assess the water quality of the wells under static conditions. On February 17, 2016 HydraSleeve samplers were placed into Well #4 at

three different depths and one sampler was placed into the Rockwater Well. On March 3, 2016, samples were collected from the Well #4 from 65 feet, 85 feet and 107 feet below ground surface and from 60 feet bgs from the Rockwater Well. District staff assisted GEI staff with the collection of the samples. The samples were transported to the District laboratory for delivery to the analytical laboratory, following standard chain-of-custody procedures.

The initial water quality samples were analyzed for VOCs (EPA 524). Temperature, pH and specific conductance were measured in the field as the samples were collected. PCE exceeded the maximum contaminant level (MCL) of 5 μ g/L in all of the samples and increased with sample depth, with a maximum concentration of 39 μ g/L. Cis-1,2-DCE and TCE were detected in the 107 ft. sample from Well #4. PCE was higher in the Rockwater well at 69 μ g/L, with TCE also detected at 1.1 μ g/L. Sample results are summarized in Table 3-6. Laboratory reports for all of the project water quality results are in Appendix F. Figure 3-1 shows the location and the results of the static water quality samples collected in Well #4 and the Rockwater Well.

Table 3-6.	Static Water (Quality	Sample R	Results			
			Well Name	Well #4	Well #4	Well #4	Rockwater
			Sample Depth (feet)	65	85	107	60
			Date	03/03/2016	03/03/2016	03/03/2016	03/03/2016
			Time	08:53	08:53	09:30	09:57
			ID#	AG50061	AG50062	AG50063	AG50064
			Туре	HydraSleeve	HydraSleeve	HydraSleeve	HydraSleeve
Analytes	Method	Units	MCL				
Temperature	Thermistor	°C	None	10.5	9.0	10.1	12.1
pH-Field	SM4500H+B	pH Units	None	6.28	6.27	6.25	7.64
Specific Conductance	SM2510B	μS	None	352	389	416	187
PCE	EPA 524.2	µg/L	0.5	8.6	34	39	69
cis-1,2-DCE	EPA 524.2	µg/L	0.6	ND	ND	0.7	ND
TCE	EPA 524.2	µg/L	0.5	ND	ND	0.9	1.1
TOC	SM 5310C	mg/L	None	0.68	0.64	0.59	

Note: Bold values are above MCL

-- = Not analyzed

3.4.2 Depth Discrete Sampling

During the constant rate test (March 29, 2016) Pacific Surveys collected depth discrete samples as the well was being pumped at 170 gpm. Samples were collected from four depths: 68-feet, 72-feet, 82-feet and 110-feet. The results of the sampling indicated the presence of PCE in each sample and all but one sample contained PCE concentrations greater than 10-times the MCL. The results from the sampling are listed above in Table 3-5.

The 110-foot sample consisted of water contributed from the open-borehole portion of the well. Results from this sampling suggest that PCE is present in the TK_{z4} aquifer zone from 106 to 175 feet at concentrations of 52.4 μ g/L. The 68-foot sample consisted of water contributed from the top of the surveyed well interval. PCE was detected in this sample at 52.3 μ g/L. On March 30, 2016, a total well sample was collected from the sample tap on the wellhead. PCE was detected in this sample at 42.3 μ g/L. Figure 3-1 shows the location and the results of the dynamic water quality samples collected in Well #4.

3.4.3 Pre-pilot Test Sampling

Pre-pilot test water samples were collected on March 24th (during the step test) to assess Well #4 water quality under pumping conditions. As indicated in Section 2.4, these samples were delivered to the analytical laboratory under District chain-of-custody and analyzed for VOCs (EPA Method 524.2), TOC (SM 5310C) and Metals (USEPA 200.7/200.8). Review of these results indicates that general water quality from Well #4 is characterized as a Calcium- Chloride water type, with a relatively low pH (6.41), low alkalinity (77 mg/L) and 158 mg/L (as CaCO₃) of total hardness. Total Dissolved Solids (TDS) (308 mg/L) and chloride (93.1 mg/L) are below secondary MCL ranges. However, Total Iron (4.99 mg/L) and Manganese (0.728 mg/L) exceed secondary MCLs for these constituents. With the exception of the VOCs, all of the other tested constituents did not exceed MCLs.

General water quality for District drinking water wells located in the South Y Area are typically characterized as Calcium – Bicarbonate or Calcium-Sodium – Bicarbonate water types with a relatively low pH (6 – 6.5), low alkalinity (40 – 55 mg/L) and 40 – 65 mg/L (as CaCO₃) of total hardness. TDS is relatively low (100 – 135 mg/L) with Total Iron and Manganese below secondary MCLs. Total chloride in water samples collected from these wells is typically less than 25 mg/L.

Background water quality data for District wells located in the South Y Area were used to select treatment methods for use during pilot testing. Based on this background water quality, TOC and minerals that act as UV scavengers were not expected to be a significant issue. The greatest anticipated concern was cloudiness caused by turbidity and total suspended solids (TSS), or possibly entrained air as a consequence of the recent well cleaning: this cloudiness could interfere with the water's ability to transmit the light. To address this concern, 15 μ m bag filters were used as a pre-filtration step prior to treatment through the UV unit.

Water quality parameters that are critical to the UV pilot test include total hardness as CaCO3; dissolved iron and manganese; turbidity; and total suspended solids. Table 3-7 provides a summary of these parameters and detectable VOC from Well #4.

The concentration of UV scavengers in Well #4 marginally exceeded NeoTech's recommended level in almost every parameter. Concentrations of iron and manganese were the greatest concern since these values were higher than expected. The well water was running visually clear during the pilot testing so these levels were expected to have been significantly lower than the reported results. The actual concentrations of iron and manganese during the pilot test cannot be quantified because confirmation samples for these constituents were not collected. Pre-Pilot test sample results were received after the pilot test was initiated, the budget and timing constrained additional unscheduled sampling. Additionally, the 15 μ m bag filter that was in place prior to the UV unit would serve to reduce excessive solids.

Table 3-7. Backgroun	d Water Quality and R	ecommended Wa	ater Quality for UV Treatment				
Parameter	MCL	Well #4	NeoTech Recommended Level				
PCE (µg/L)	5	39	n/a				
TCE (µg/L)	5	0.8	n/a				
cis-1,2-DCE (µg/L)	6	0.6	n/a				
TOC (mg/L)	None	0.55	<0.5				
Iron (µg/L)	300	4990	<300				
Manganese (µg/L)	50	728	<50				
Hardness (mg/L)	None	158	<120				
Turbidity (NTU)	None	0.37 – 1.66	<1				
Suspended solids (mg/L)	None	11.4	<10				

3.4.4 Pilot Testing

UV/AOP

There were several challenges with the onsite pilot testing of UV/AOP. The first problem identified was the plumbing configuration did not allow for strict forward flow control. Consequently, backpressure on the unit did not allow for testing until after the constant rate test was completed. The unit was left online during the entire constant rate test to monitor durability of the UV lamps and to stress test the unit itself. Over the 30 hour runtime, the quartz sleeve became coated with an iron precipitate causing a very low applied UV dose when the pilot testing was started. After cleaning the sleeves, an acceptable but lower than desired UV dose was achieved. The maximum dose achieved was 6.0 mill-Watts/square centimeter (mW/cm²), or 1388 mill-Joules/square centimeter (mJ/cm²) at five gallons per minute. At this dose, only 26 percent of PCE was decomposed. The following section describes the pilot testing procedures and results.

Since the UV unit is relatively compact and easy to set up, this treatment process was tested onsite. The UV chamber and controller are pictured below Figure 3-4. Initial setup included pressurizing the chamber; warming the lamps; activating the controller; allowing the controller to stabilize for a few hours; and performing some initial field water quality tests (pH, temperature, EC, turbidity, UVT, and TSS). Several field tests were conducted during the constant rate test; a summary of these test results are provided in Table 3-9. Turbidity fluctuated quite a bit throughout the test period and intermittently showed higher concentrations coming out of the UV (indicating inorganic precipitation). The field samples were collected after the bag filter, rather than the well head, to represent water quality entering the UV unit. A simple depiction of the treatment process flow is as follows:

well head \rightarrow bag filter \rightarrow pressure gauge \rightarrow dosing pump \rightarrow UV chamber \rightarrow GAC \rightarrow discharge

Figure 3-4. NeoTech UV Pilot Test Unit

Field water quality testing was conducted over a period of three days to monitor changes in water chemistry. The applied UV dose was also monitored, although performance sampling was not initiated until after the 24-hour constant rate test was completed. The UV unit was in operation during the entire pump test; however, the plumbing configuration to the unit did not allow for strict control of forward flow. Therefore, when the constant rate well test was completed, the well and UV system were shut down while plumbing modification were made and the 15 μ m bag filter was replaced. To stress test the UV unit's performance, the UV system was in operation during the entire 24 hour test.

The well was shut down for approximately 12 hours between completing the constant rate test and plumbing reconfiguration. Water quality testing began approximately one hour after start-up. Turbidity after the bag filter was 1.66 NTU and the UV unit was turned on. With only 25 hours on the UV lamps, it was difficult to achieve the desired UV dose: several flow adjustments were made to achieve the desired UV dose, but the unit was not reaching a high enough output regardless of flow control. It was suspected that inorganic fouling on the quartz sleeve was interfering with the unit's performance since a much higher dose was achieved in the previous test period shortly after the initial start-up.

To increase the applied dose, the unit was shut down to cool and approximately one gallon of household strength Calcium, Lime & Rust Remover (CLR) was poured into the UV unit. The CLR was mixed with well water residing in the unit. The UV unit was rocked back and forth to mix the CLR and well water, then allowed to react for one hour. This cleaning resulted in a significantly increased UV dose. VOC sampling commenced immediately to measure decomposition through direct photolysis. Table 3-8 provides results of UV field testing as applied dose and percentage of PCE destroyed at the various dose rates. Table 3-9 provides a complete summary of field measurements, water quality testing and VOC results. The laboratory reports for the water quality samples are in Appendix F.

Table 3-8.Results	of UV Field Testing				
UV dose (mJ/cm²)	UV Transmittance	% Removal for UV alone	% Removal for UV with Cl ₂		
1147	98.2%	17	NA		
1388	98.5%	26	NA		
1288	98.7%	19	NA		
500	94.7%	NA	4		

As demonstrated by the results in Table 3-8, the amount of PCE removed via direct UV photolysis was inadequate. Decomposition through UV/AOP was negligible; this is likely a consequence of the sodium hypochlorite oxidizing dissolved iron and manganese, inhibiting the unit from providing the necessary UV dose to decompose VOC's. This is displayed by the low UV dose delivered at the time of sampling. The image in Figure 3-5 shows the iron precipitate on the quartz sleeve.

A summary of the UV Pilot Test Results are presented in Table 3-9. Review of these results indicate that PCE is not effectively removed by UV. Even at the very high dose of 1,388 mJ/cm² (3/30/2016 at 13:58) a maximum of 26 percent of PCE was decomposed, and only four percent in AOP conditions (based on the "before UV" of 38.4 ppb PCE and "after UV" of 36.8 ppb of PCE results). These results indicate that a full-scale UV treatment system would need to be very large, requiring several passes through multiple UV chambers to achieve the necessary reduction. Given these pilot test results, UV/AOP is not a recommended treatment technology.

Granular Activated Carbon

Evoqua Water Technologies supplied a PV2000 model granular activated carbon (GAC) vessel with 2,000 pounds of AquaCarb 1230C coconut shell carbon. This treatment process was used onsite to meet sanitary sewer discharge requirements. Discharge samples and dye test performed on the spent carbon show the specified carbon effectively removes PCE and other co-occurring organic contaminants. The following section describes the treatment technology and site specific tests performed

Granular activated carbon (GAC) is an effective treatment method for organic contaminants; specifically, PCE because it is very well adsorbed onto carbon. GAC is identified as a best available technology for the control of 55 of the 60 regulated organic contaminants. Benefits to this treatment

						FIELD								LAB RESULTS			
Date Time		Flow Rate	UV Dose			рН	Temp	EC	Free Cl₂	Total Cl₂	Turbidity	UVT	TSS	cis-1,2-DCE	PCE	TCE	TO
	Time	GPM	mW/cm²	mJ/cm²			°C	μS/cm			(NTU)	(%)	(mg/L)	μg/L	μg/L	μg/L	mg
														6 ¹	5 ¹	5 ¹	
3/28/2016	15:47	25			Before UV	7.39	8.3				1.38	93.2		0.6	37.6	0.8	0
3/28/2016	17:31	10	6.7		Before UV	6.40	9.4	441			0.91	99.7					-
0/00/0040	40.40	05			Before UV	6.47	10.8	421			0.45	98.6	1				-
3/28/2016	/2016 13:10 25 6	6.5	1116	Before UV	6.46	11.2	419			0.43	96.4	4				-	
3/28/2016	13:20	9	6.2	1147	After UV	6.86	9.8	427			0.59	96.5	5				
					Well head	6.52	9.5	478			2.27						· ·
3/30/2016 9:30				Before UV	6.44	10.1	448				98.2						
				After UV	6.54	9.3	401										
3/30/2016 10:00	10	0.4	516	Before UV	6.52	10.6	438			0.43	100	14					
	10	3.1		After UV	6.42	10.6	423			0.8	97.8	4				· ·	
					Well head	6.88	5.5				5.83	92.6					· ·
3/30/2016 10:16				Before UV	6.47	5.7				1.63	94						
					After UV	6.42	5.6				1.66	96.2					
a /a a /a a / a	10.17				Before UV	6.5	10.5	422			0.73	100					
3/30/2016 10:47 24	24			After UV	6.45	10.7	423			1.44	98.9						
3/30/2016 13:40	140			Well head									0.7	42.3	0.8	1	
	9	6.2	1147	Before UV	6.48	10.8	420			0.45	98.9	1	0.7	38.3	0.8		
				After UV	6.46	11.2	419			0.77	98.2	1	0.6	35.1	0.7		
					Before UV	6.49	11	418			0.48	98.6	0				
3/30/2016 13:58	5	6.0	1388	After UV	6.46	10.9	419			0.37	98.5	0	ND	31.1	0.7	1	
3/30/2016 14:15					Before UV	6.48	10.8	418			0.47	98.7	1				
	7.5	.5 5.8	1288	After UV	6.46	11	419			0.42	98.7	0	0.6	34.1	0.7		
3/30/2016 15:15					Before UV	6.49	10.5	426	1.6	2.0	0.76	94.3	6	0.6	38.4	0.8	
	15	15 4.5	500	After UV	6.48	10.9	421	1.5	1.6	0.77	94.7	4	ND	36.8	0.6		

Note: ¹ MCI, gallons per minutes (gpm), mill-Watts/square centimeter (mW/cm²) and mill-Joules/square centimeter (mJ/cm²), micro-siemens per centimeter (µS/cm), nephelometric turbidity units (NTU)

SOUTH TAHOE PUBLIC UTILITY DISTRICT // FINAL REPORT FOR THE SOUTH Y EXTRACTION WELL SUITABILITY INVESTIGATION

method are that it's operationally simple and is insensitive to on/off cycles. However, adsorption is a non-steady state process which requires periodic replacement of the GAC media, or reactivation. Media replacement costs typically account for the bulk of the operational costs.

Inorganic fouling from precipitated metals and TOC pose the greatest threat to effective GAC filtration as it competes for pore space that could be used for PCE removal. Iron and manganese above method detections levels also may significantly reduce GAC treatment efficiency. Generally, TOC concentrations greater than 0.5 ppm are considered a potential interference. As shown in Table 3-7, all three constituents that impact GAC treatment performance are present in Well #4. We used a high activity 12x30 mesh coconut shell carbon for the pilot test. This particular carbon has a high surface area designed to tolerate some fouling while providing VOC removal.

To determine the potential impact of site specific water chemistry, Evoqua Water Technologies performed a dye test on the spent carbon to evaluate fouling potential. The dye test uses dye loading rate as an indicator of adsorption into GAC pores of the virgin and spent carbon samples. The dye adsorption rate on the spent carbon was 30 percent slower than it was on the virgin carbon, indicating fouling but could not be quantified since operations varied during the various well tests. This fouling is likely a consequence of iron and manganese release after well cleaning. In a full scale application, this fouling would decrease the GAC bed life by 30 percent. Dye test results are presented in Appendix G.

Because GAC is operationally simple and can reliable remove PCE, it is the recommended treatment technology for Well #4. The recommended carbon is a 12x30 mesh coconut shell. Because iron and manganese levels exceed secondary MCLs and can cause significant fouling on the GAC, a pre-treatment system may be needed in the future, if Well #4 is used. However, a new replacement well may not require pre-filtration through a bag filter or iron and manganese filter. Further testing during drilling of a new extraction well and/or replacement water supply well would be needed to confirm the need for iron and manganese treatment prior to GAC filtration.

4.1 Groundwater Production

4.1.1 Estimated Yield

Based on the results from the constant rate aquifer test, the well can produce 170 gpm with a pumping water level of 22.57 feet below measuring point (bmp). The first perforated zone as indicated by the LBWC Well Log for Well #4 is from 43-63 feet bgs and the second zone is from 68-78 feet bgs. With the 10-inch liner that has been installed into the well, the louvered perforations from 8 to 106 feet bgs allow water to enter into the well from the original perforated intervals.

When determining the pumping rate for a well it is good practice to have a pumping rate that allows the pumping water level to remain above the top of the upper most perforated interval. If the water level is drawn below the top perforation then water can cascade into the well from the exposed perforations which can increase the potential for biofouling and oxidation of the perforations. The drawdown and pumping water level at pumping rates of 200 gpm, 400 gpm, 600 gpm and 800 gpm and pumping durations of 30, 90 and 365 days were estimated using the Theis drawdown equation and the aquifer characteristics from Table 3-4. The results from the analysis are in Table 4-1, below. Based on the projections a pumping rate of 400 gpm is the maximum rate that can be sustained for 365 days of pumping without having drawdown exceed the depth of the top of the original perforations.

Table 4-1.Estimated Drawdown and Pumping Water Levels for Different Pumping Durationsand Pumping Rates						
Pumping Rate (gpm)	Drawdown for Different Pumping Durations (days)			Pumping Water Level for Different Pumping Durations (days)		
Nate (gpin)	30	90	365	30	90	365
200	11.0	11.7	12.6	26.4	27.1	28.0
400	22.0	23.4	25.1	37.4	38.8	40.6
600	33.0	35.0	37.7	48.4	50.5	53.1
800	43.9	46.7	50.2	59.4	46.7	65.7

Note: Static Water Level 15.46

4.1.2 Capture Zones

To estimate the distance at which the Well #4 will capture PCE, a capture zone analysis was completed. The Javendal & Tsang, 1986, method of calculating the capture zone from a single groundwater extraction well was used to estimate the capture zone of the Well #4 at four different pumping rates: 200 gpm, 400 gpm, 600 gpm and 800 gpm. Figure 4-1 shows the different capture zones relative to the well location, the blue dot, for the different pumping rates. The variables for the equation consist of flow rate (Q), horizontal hydraulic conductivity (K_h), hydraulic gradient (i) and aquifer thickness (B). The figure shows the max upgradient width of the capture zone (open portion of the parabola) and the distance to the downgradient stagnation point (closed point of the parabola). These calculated distances are provided in Table 4-2.

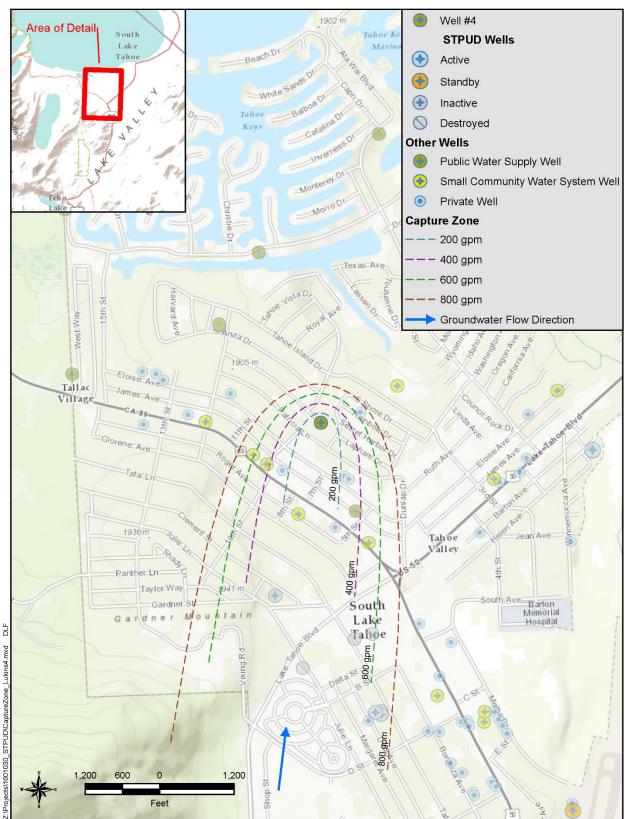


Figure 4-1. Capture Zone Analysis Results

Table 4-2.	Capture Zone Distar	nces		
Pumping Rate (gpm)	Max Upgradient Width of Capture Zone (feet)	Distance to Downgradient Stagnation Point (feet)	Optimal Distance Between Two Wells on a Line (feet)	Optimal Distance Between Three or more Wells on a Line (feet)
200	989	158	317	396
400	1979	315	633	791
600	2968	473	950	1187
800	3957	630	1266	1583

The analysis performed assumes a total aquifer thickness of 102 feet which is TK_{z4} and TK_{z5} , combined. A hydraulic gradient of 0.008 and flow direction of N 7° E was provided to GEI by the District and was calculated using May 2016 water level data. The average horizontal hydraulic conductivity was calculated using the equation $T = K_h B$, where $K_h = B/T$. The transmissivity calculated from the aquifer test data is 36,400 gpd/ft or 4,866 ft²/day. The K_h was calculated to be 47.7 feet/day. The results of the analysis also provide the optimal distances between two wells on a straight line or between three or more wells on a line for the purposes of planning an extraction network.

4.1.3 Groundwater Flow Rate and Travel Time

The data gathered during this investigation were used to calculate the velocity of groundwater flow in the aquifer. Darcy's law was used to determine the groundwater velocity (ft/day) within aquifer zones TK_{z4} and $TK_{z5.}$. Darcy's law states that Q = KiA; where Q (gpm) represents the volumetric flow of groundwater through a given area (A) of the aquifer (ft²); under the influence of a measured hydraulic gradient (i) (dimensionless) (Fetter, 2001). To determine the groundwater flow rate or Darcy velocity, both sides of the equation are divided by a unit area to yield the equation: Q/A = q = Ki; where the q is the Darcy velocity (ft/day). The Darcy velocity does not account for the porosity of the aquifer, so the pore velocity of the aquifer was calculated by dividing the Darcy velocity (Ki) by the effective porosity of the aquifers (n_e).

The average hydraulic conductivity determined during the aquifer testing of Well #4, 47.7 ft/day was used and the hydraulic gradient from May 2016 groundwater data, 0.008. The calculated Darcy velocity was 0.38 ft/day. For the pore velocity calculation a range an effective porosity of 20% to 35% for a typical sand and gravel aquifer was used (Fetter, 2001). The pore velocity approximates the rate at which a single molecule of water will travel through the aquifer and is a rough estimate of the rate at which contaminants would move through the aquifer. Based on the porosity range the pore velocity would range from 1.09 ft/day (using $n_e = 0.35$) to 1.91 ft/ day (using $n_e = 0.2$). To put the pore velocity into perspective the estimated travel time for a molecule of water from Well #4 to the Tahoe Keys Property Owners Association (TKPOA) Well #2 was estimated and summarized Table 4-3. TKPOA Well #2 is approximately 3,000 feet north of Well #4. Using the two pore velocities it is estimated that it would take between 4.3 and 7.5 years for a particle of water to travel from Well #4 to TKPOA Well #2. Table 4-3 presents the calculated velocities and travel times.

Table 4-3.	Aquifer Flow Velocity and Travel Time					
Groundwater Flow Velocity and Travel Time						
Darcy Velocity	Porosity Range (%)		Pore Seepage Velocity (ft/day)		Travel Time to TKPOA Well #2 (years)	
(ft/day)	Low	High	Low	High	Low	High
0.38	20%	35%	1.09	1.91	4.3	7.5

4.1.4 Vertical Hydraulic Conductivity Distribution

We proposed to utilize the spinner data to calculate the variation of the horizontal hydraulic conductivity (K_h) with respect to depth (K_z) . We had planned to use the method outlined in the 'Measurement of Hydraulic Conductivity Distributions: A Manual of Practice', that was published by the United States Environmental Protection Agency (EPA) (Molz, et al, EPA/600/8-90/046).

Pacific Surveys provided the raw spinner survey data to GEI and the analysis was performed. Upon reviewing the results, a discussion with the District Hydrogeologist (I. Bergsohn) was conducted to inform Mr. Bergsohn that the method does not provide an appropriate analysis for the Well #4 data. We have identified three reasons why the spinner survey data could not be analyzed using the EPA 600 method. First, the current state of the Well #4 is atypical as it has a 10-inch louvered liner installed within a 12-inch diameter casing that has different perforated intervals than the louvered liner. There is a 1-inch annular space between these two materials which modifies the flow into the well.

Second, the EPA 600 method assumes that the radial gradients of the water enter the well bore are constant and uniform. The 1-inch annulus the is present from ground surface to about 119 feet bgs creates a void where water can enter and exit the liner at many depths. We believe there is evidence of water (flow) entering and leaving 10-inch diameter liner at different depths as shown on the spinner log provided by Pacific Surveys that is presented in Appendix E. A typical spinner survey is operated from the bottom of the screened interval to the top of the upper screened interval and the cumulative flow contributed to the well increases as the spinner tool is raised to the top of the screened interval, at which time the total flow of the well is measured. The data gathered in the Well #4 shows that the flow rate fluctuated, possibly due to water exiting the 10-inch liner through the louvers, traveling up the 1-inch annulus between the original casing and the louvered liner.

Third, information regarding the percentage of flow contributed to the well were not known prior to conducting the survey. The pump was set at 47-feet bgs and the spinner tool traveled through an access pipe that was set to about 63 feet bgs. The spinner tool operator did not want to lower the tool into the open portion of the well, therefore the only portion of the well that was surveyed was from 63 - 115 feet bgs. The results of the survey indicate that only about 8% of the total flow, or about 13 gpm, came from this interval and that the remaining of the flow came from the open portion of the borehole and from the upper aquifer zone TK_{z5} from 43 - 75 feet bgs and the open-borehole, lower aquifer zone TK_{z4} from 106 – 175 feet bgs (Table 3-5).

Due to the above reasons we could not calculate the K_z and instead an average K_h of 47.7 ft/day was calculated and used for our analyses.

4.2 Groundwater Quality

4.2.1 Zonal Water Quality Concentrations

Using the PCE results from the depth discrete sampling and the flow from the contributing zones, the mass of PCE produced in pounds per day (lb/day) were calculated for each zone for the test rate of 170 gpm. The PCE results for the 72-foot sample, 55.1 μ g/L were used for the interval from 42 – 75 feet. The other PCE concentrations were chosen by the dynamic sample that represents the zone. The same contribution percentages for each zone were assigned to different pumping rates 200 gpm, 400 gpm, 600 gpm and 800 gpm and the mass of PCE produced during these rates were also calculated. The results are presented in Table 4-4.

Table 4-4.	Mass Loa	ding Calcu	ulations					
Flow	Percentage of	Dynamic Flow Samples		Mass (lbs/day) of PCE at Different Flow Rates				
Interval (feet)	Total Flow	Depth (feet)	Result (µg/L)	170 gpm	200 gpm	400 gpm	600 gpm	800 gpm
42 -75	38%	68	52.3					
42-75	5078	72	55.1	0.04	0.05	0.10	0.15	0.20
75 -106	8%	82	47	0.01	0.01	0.02	0.03	0.04
106 -175	54%	110	52.4	0.06	0.07	0.14	0.22	0.29
Total lbs/day		bs/day	0.11	0.13	0.27	0.40	0.53	

5.1 Increased Pumping Rate and Duration

The production rate and specific capacity encountered during the constant rate test on the Well #4 were higher than anticipated. The constant rate test pumping rate was limited by the discharge capacity of the test pump and the treatment capacity of the onsite GAC filter. During the constant rate tests, bag filters were used to remove particulates from the water prior to entering the UV and GAC filters. A longer duration of pumping may remove the need for such filters. These particulates could have also been contributed to not pumping the well long enough for well development after the mechanical cleaning of the well. Pumping well development was proposed prior to the step test but ultimately not conducted due to budgetary and time constraints.

The estimated results for pumping at 400 gpm, 600 gpm and 800 gpm are contained in this report. Performing an extended confirmation test at a higher pumping rate is recommended to confirm final treatment flow and contaminant loading rates for well head treatment system design. The preliminary design is based on a PCE contaminant mass load of 0.27 pounds per day (lbs/day) at an estimated pumping rate of 400 gpm.

6.1 Groundwater Quality

6.1.1 Well #4 Static Zone Sampling

Water samples were collected from three different depths during static conditions and from four different depths while the well was pumping 170 gpm near the end of the constant rate test. The water quality samples during the static conditions indicated that the PCE concentrations increased with depth.

6.1.2 Well #4 Dynamic Zone Sampling

During the constant rate sampling the PCE concentrations were greater than those that were measured during the static condition, however, the concentrations did not vary with depth like they did under static conditions. There was a slight drop in PCE when the dynamic samples were compared to the sample collected at the well head during the constant rate test. However, these samples were not collected at the same time and the drop in PCE could be due to the concentration dropping slightly with additional pumping or it could be from dilution being caused by water produced from the upper zone that may have lower PCE concentrations but was not sampled due to the access pipe for the spinner tool that blocked this zone.

TCE and cis-1,2 DCE were detected in the sample from 107 feet bgs and their results were 0.7 μ g/L and 0.9 μ g/L, respectively. Regional water quality data were not analyzed as part of this study to determine if the presence of ci-1,2 DCE and TCE provide evidence of PCE degradation.

6.1.3 Well #4 Pre-Pilot Test Water Quality

In addition to VOCs, pre-pilot test water quality sampling included general mineral and inorganic chemicals. The full list of sample results are provided in Appendix F. Of the regulated constituents tested, only iron, manganese, and PCE exceed their respective MCLs. This data is not a comprehensive test to determine that the water quality will meet all drinking water standards. As the project progresses and a decision is made to use the existing Well #4, or a replacement well, a complete set of Title 22 sampling should be conducted to assess water quality and to determine if additional treatment processes are needed.

Since the PCE concentration is expected to exceed 10 times the MCL of $5 \mu g/L$, Well #4 would be classified as an extremely impaired source. According to Policy Memo 97-005 any well that exceeds 10 times the MCL or has multiple contaminants would be classified as extremely impaired. While DDW encourages using these sources for non-potable consumption, if there is not feasible alternative (irrigation, recreation, or industrial uses) in South Tahoe, they will work with the utility to permit the source for drinking water. Particularly in situations where a contaminant plume needs to be mitigated through pump and treat methods. The District and LBWC should reference the policy memo provided in Appendix I to better understand the requirements of treating extremely impaired water sources.

GEI has experience permitting drinking water wells that are severely impacted with PCE. In our experience, DDW has required redundant GAC vessels (i.e. operating in a lead/lag configuration as recommended in Section 3.4.4) and possibly a more stringent monitoring frequency than typically required for VOC treatment systems. Additionally, the operating permits have required the carbon is replaced upon detection of the lead contaminant (PCE in LBWC#4) to minimize the risk of exceeding the MCL in water supplied to consumers.

If the project progresses as recommended, California Division of Drinking Water (DDW) should be engaged early in the process to ensure all special provisions are incorporated into the well design and treatment process.

6.1.4 Rockwater Well

Only one sample, a static sample, was collected from the Rockwater Well and it was collected from a depth of 60-feet on the same day that the static samples from the Well #4 were collected. The PCE result was 69 μ g/L and TCE was detected at 1.1 μ g/L. These results were higher than that of the samples collected from the Well #4. As the Rockwater well is situated hydraulically upgradient with respect to Well #4, the higher results in the upgradient well suggests that the PCE contaminant source is likely located further up-gradient, to the south of these wells.

6.2 Extraction Well Alternatives

Based on the results of our field work, analyses and discussions with the District and LBWC, we have developed five alternatives for pumping and treating PCE at the Well #4 location. The alternatives and their advantage and disadvantages are described below and Table 6-1 provides a brief overview of the alternatives and the advantages and disadvantages.

Alternative 1 would use existing Well #4 as an extraction well and limit extraction rate to 200 gpm and discharge all produced water to the District's sanitary sewer. One of the main advantage would using the existing well and property and the District's sanitary sewer system would be capable of handling up to 200 gpm discharges depending on peak demands. Another advantage would be not needing DDW permit since well would not be used for drinking water. A disadvantage would be the well could continue to be a vertical conduit for the movement of PCE contamination from TK_{z5} to TK_{z4} and the exact well design is not known.

Alternative 2 would use Well #4 as an extraction well with a pumping rate of 400 gpm and permit the well with the Division of Drinking Water for use as a public drinking water supply. This alternative would provide an additional 400 gpm to the LBWC system and would provide some level of hydraulic containment and removal of PCE from the South Y Area. The disadvantages in addition to those in Alternative 1, include the DDW permitting process which may not be possible due to the PCE concentration, and lack of sanitary seal. The iron and manganese observed during the pilot testing will also significantly reduce GAC removal capacity by up to 30-percent.

Alternative 3 would consist of properly destroying Well #4 and drilling a new extraction well located on the same site. Pumping rate could be 200 gpm or 400 gpm and would have the advantages and disadvantages of these pumping rates as listed above. The main advantage of a new well would be that it would be designed to meet DDW standards and would not provide a vertical conduit for the movement of PCE contamination from TK_{z5} to TK_{z4}. The lifespan of the well could be greater than 50-years and water quality testing could be conducted during the drilling to create the most ideal well design. PCE removal could be optimized using spinner logging data collected from the new well.

Та	Table 6-1. Alternatives				
	Alternative	Advantages	Disadvantages		
	Existing Well #4	Low Cost	Vertical Conduit for Contamination		
	Operating at 200 1 gpm for Extraction	Ease of Disposal	Poor Well Reliability		
1		Ease of Permitting	Poor Well Performance		
	and not Municipal Water Supply		High Uncertainty in Well Design		
			No Sanitary Seal		
	Existing Well #4	Low Cost	Vertical Conduit for Contamination		
2	Operating at 400	Drinking Water Supply	Permitting Complexity		
2	gpm Served as	Improved Remediation	Poor Well Reliability		
	Drinking Water	Improved Certainty in Remediation of PCE	Higher Treatment Cost		
		Solve Vertical Conduit Problem	Higher Costs (well construction/destruction)		
0	New Municipal	No Land Cost	Deeper Seal may Hinder Shallow GW Remediation		
3	Supply Well at Current Location	Well Construction Consistent with State Standards			
		Improved Reliability / Well Life			
		Improved Certainty in Remediation of PCE			
		Solve Vertical Conduit Problem	Cost of Land Purchase		
		Well could be optimally located as needed in water system	Uncertainty in PCE Levels and Aquifer Properties		
4	New Well at New Location	Well Construction Consistent with State Standards	Higher Costs (well construction/destruction)		
		Improved Reliability / Well Life	Deeper Seal may Hinder Shallow GW Remediation		
		Improved Certainty in Remediation of PCE	Potentially More Complicated Service Connection		
		Solve Vertical Conduit Problem	Higher Well Cost		
	New Shallow Extraction Well and	No Land Cost	Higher Treatment Cost		
5	Deep Municipal Supply Well at	More Certainty Regarding PCE Levels and Hydraulic Control	Higher Permitting Complexity		
	Current Location	Improved Operational Flexibility			
		Less Complicated Service Connection			

One disadvantage would be the costs associated with destroying Well #4 and constructing and testing a new well. The permitting costs may be elevated due to the known contamination at the site. The new well would potentially lose 38% of the total flow when compared to Well #4 since it would have a 50-foot sanitary seal that would not allow the upper TK_{z5} aquifer to be screened.

Alternative 4 consists of drilling a new extraction well at a new site that provides either a greater benefit for use of the treated water for the District and LBWC or for easier disposal of the treated water. The pumping rate would be determined by testing performed during the drilling of the well. Well #4 will be destroyed. In addition to advantages listed for Alternative 3, this alternative would provide a source of water at a more beneficial location for LBWC. The costs associated with purchasing a new parcel of land including all the service connections for the sanitary sewer and power, would be a disadvantage to this alternative. In addition to the other disadvantages from Alternative 3, the pumping rate and PCE concentration at the new well may be less than Well #4.

Alternative 5 would consist of properly destroying Well #4; use the same site to construct a new shallow extraction well; a deeper replacement water supply well; and an on-site treatment system with sufficient capacity to treat pumped groundwater from both wells to drinking water standards. In addition to the advantages from Alternative 3, the use of two wells will allow separate well designs to best match the hydraulic requirements of the water-bearing zones from which they are designed to pump groundwater and two wells will allow greater operational flexibility to pump contaminated groundwater from specific shallow and deep water-bearing zones, as needed. There will also be benefits due to the construction of a single treatment system for both wells and the addition of a new source of drinking water for the South Y area. The disadvantages for this alternative will be similar to Alternative 3 with the addition of a more complex treatment design and DDW may not permit the shallow supply well for a municipal supply if it is not constructed in accordance with Waterworks standards.

6.3 Site Recommendations for use of Well #4 as an Extraction Well

Of the five alternatives outline above, GEI recommends that Alternatives 3 and 5 be carried forward into a feasibility study. Alternative 3, consisting of drilling a new well at the Well #4 site and getting the well permitted for use as a drinking water supply is recommended because the new well will structurally meet all of the DDW standards and may make the permitting process less complicated considering the PCE concentrations will still need to be addressed. The original Well #4 will be destroyed according to all state and county well standards. Alternative 5 is similar to Alternative 3 but consists of also constructing a shallow extraction well to remove PCE affected groundwater from the upper TK_{z5} zone.

Due to the requirement of a 50-foot sanitary seal, the upper TK_{z5} zone may be sealed off if Alternative 3 is chosen which would impact removal of PCE from this horizon and may reduce the overall pumping rate. As part of a feasibility study, we recommend that a multilevel piezometer be constructed within 100' of Well #4 so that a final determination can be made between Alternatives 3 and 5. The multilevel piezometer will provide multiple benefits throughout all subsequent phases of the project development as shown on Table 6-2. Water quality and water level information collected from the monitoring well during the feasibility study and design phases will be used to select the preferred alternative (3 vs. 5), and to complete the design of the well and treatment system. During the operational phase of the project, changes in groundwater levels and PCE concentrations in the aquifer measured in the monitoring well will be useful for optimizing the extraction and treatment program.

The Alternative 3 target production rate for the new well would be between 200 gpm and 400 gpm which would be a significant increase to the LBWC system. The same combined production rate is assumed for planning purposes for both the deeper and shallow wells for Alternative 5.

Table 6-2. Multi-Level Monitoring Well Benefits				
Information	Project Phase			
	Feasibility Study	Pre-Design and Design	Operation and Optimization	
Groundwater Samples for Each Discrete Aquifer Zone	1	1	2	
Groundwater Levels in Each Discrete Aquifer Zone under Static and Pumping Conditions	1	2	1	
Geologic and Geophysical Logging During Drilling	1	1	2	
Collection of Formation Samples for Grainsize Analysis During Drilling	1	1	2	
Applications				
Improved Understanding of Vertical Distribution of PCE	1	1	1	
Trend Monitoring - Changes in PCE Concentration Over Time	2	2	1	
Improved Understanding of Vertical Migration of PCE	2	2	1	
Changes in Well Performance Over Time	2	2	1	
Formation logs and samples improve well design and avoid standby costs during Extraction Well Construction	1	1	2	

Note: 1 Primary Benefit, 2- Secondary Benefit

6.4 Treatment Pre-Design and Cost Estimate

A treatment system pre-design concept was created for Alternative 3 that assumes a new well that is capable of producing 400 gpm and is constructed at the same site as the Well #4. Site improvements will include: destruction of Well #4, removal of onsite hydropnuematic tank. A new production well will be constructed and surrounded by a new concrete building and covered with a pre-fabricated metal well house with sliding door located on the roof for pump removal. Two GAC vessels will be placed in the building for treatment of the water prior to being chlorinated in a separate room within the well house that will contain the chlorine and a dosing pump. A new power panel will be installed along with a new submersible pump and motor. The pump-to-waste will be routed to the nearby sanitary sewer for discharge during start-up.

During pilot testing of LBWC#4, iron and manganese concentrations were elevated, however, further testing will be necessary to confirm if the results were representative of the actual level or if they were a temporary result of the mechanical cleaning. Since iron and manganese significantly reduces GAC removal capacity, a pre-treatment system may be necessary. Considering that both recommended alternatives includes a newly constructed well(s), it is assumed that iron and manganese levels found in LBWC#4 will be reduced and will be consistent with lower iron and manganese concentrations observed throughout the South Tahoe basin. Therefore, the pre-design treatment train does not include an iron and manganese treatment system. Further testing during drilling of a new extraction well and/or replacement water supply well would be needed to confirm the need for iron and manganese treatment prior to GAC filtration.

Appendix J contains a flow diagram that shows the recommended treatment process for Alternative 3. The recommended operation is in-series where two GAC vessels are installed and water flows through the first vessels then the second; sometimes also referred to as a lead/lag operation. This is the preferred operation because it maximizes carbon utilization. Carbon in the lead vessel will be fully saturated while the lag vessel is still removing VOC's. During full scale operation, LBWC may opt to replace spent carbon in one vessel at a time which allows for continuous operation while fully utilizing carbon capacity. In-series operation allows the secondary, or "lag," vessel(s) to maintain final effluent quality while GAC in the lead vessel is used to remove the majority of the VOC's (PCE, TCE, cis-1,2-DCE). Once effluent concentrations from the lead vessel reach a specified level the lead vessel can be isolated for carbon replacement. The lead/lag configuration is routinely reversed as needed to maximize operating efficiency. Based on the predicted carbon usage rate, the process of switching vessels and replacing carbon would occur approximately every 12-18 months.

Table 6-3 provides the cost estimate for GAC treatment and for constructing a new well as described in Extraction Well Alternative 3. A cost estimate quote from Evoqua Water Technologies, from which the GAC system costs were derived is provided in Appendix H. These estimates are based on well production of 400 gpm and PCE concentrations around 39 μ g/L. The recommended GAC system consists of an Evoqua model HP810SYS system (two 8-foot diameter absorbers that each hold 10,000 pounds of carbon and interconnecting manifold). Unit specifications are included in Appendix H. Alternative 3 costs are similar to what would be required for Alternative 5, which the exception of the shallow extraction well. The estimated costs for also constructing the multi-level monitoring well and shallow extraction well were added as a footnote to Table 6-3 to approximate the costs associated with this alternative. These costs do not include sampling costs, permitting or temporary treatment or disposal fees that may be needed during confirmation testing to gain approval from DDW for the operation of the new wells for extraction and drinking water sources.

Table 6-3. Alternative 3 Cost Estimate		
Description	Unit Price	Total
Construction - Well #4 Destruction, New Well Construction, building, etc.	Treatment System Installation,	Pre-fabricated
	Construction Subtotal =	\$799,468
Other Construction Costs		
Unallocated Items	5%	\$39,973
	Construction Total =	\$839,442
Other Owner Costs		
Administration and Legal	5%	\$41,972
Environmental Documentation and Permitting	12%	\$100,733
Engineering Design and Investigations	15%	\$125,916
Engineering During Construction	5%	\$41,972
Construction Management	8%	\$67,155
	Other Owner Costs Subtotal =	\$377,749
	Project Subtotal =	\$1,217,190

Project Contingency	50%	\$608,595
	Project Total =	\$1,825,786
Annual O&M Cost Estimate for Treatment System and Carbon C	osts	\$23,000

Notes:

1 Project contingency is an upper estimate range for total project costs based on the design level.

2 Multi-level monitoring well estimated cost: \$115,000, \$173,000 with contingency.

3 The shallow extraction well cost for Alternative 5 Is an additional \$150,000 and \$225,000 with contingency added to the estimated Alternative 3 costs.

Since PCE occurs at such high concentrations, it will breakthrough before TCE and cis-1,2-DCE and is considered the lead contaminant. Additionally, because there is a significant difference in concentration, GAC treatment will be relatively insensitive to the co-occurring VOCs.

Evoqua's modeling, using pre-pilot test water quality results (with an adjusted iron and manganese concentrations of 150 and 30 μ g/L, respectively) predict the AquaCarb 1230C will treat approximately 714,000 gallons of water prior to showing PCE breakthrough at 0.5 μ g/L. Assuming LBWC Well #4 operates at 400 gpm, 24 hours per day, the carbon usage rate is approximately 20 pounds per day. The recommended 20,000 pound units will last 971 days, or 2.66 years. This results in an annual carbon cost of \$15,000. Operations and maintenance costs including increased sampling and labor costs are estimated at approximately \$8,000 per year.

Fetter, C.W., Applied Hydrogeology, 4th ed., 2001, Prentice-Hall, Inc.

- GEI Consultants, Inc., *Work Plan for the South Y Extraction Well Suitability Investigation*, South Lake Tahoe, South Lake Tahoe Utility Department, March 2016
- Javendal, I., and Tsand, G., 1986, "*Capture-Zone Type Curves: A Tool for Aquifer Cleanup*", Ground Water, Vol. 24, No. 5, pp. 616-625
- Molz, F.J, et al, *Measurement of Hydraulic Conductivity Distributions A Manual of Practice*, EPA/600/8-90/046, United States Environmental Protection Agency
- Theis, C.V., 1935. *The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage*, Am. Geophys. Union Trans., vol. 16, pp. 519-524.

- C.1 Video Survey Data
- C.2 Step-Test Data
- C.3 Constant Rate Test Data

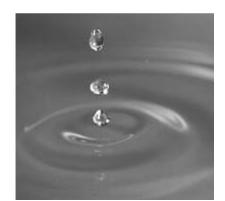
- **D.1 Step-Test Graphs**
- **D.2 Constant Rate Test Graphs**
- D.3 LBWC #4 Transducer Data
- **D.4 Rockwater Well Transducer Data**

- F.1 HydraSleeve (Static) Water Quality Sample Results
- F.2 Pre-Pilot Testing Water Quality Sample Results
- F.3 Dynamic Flow Survey Water Quality Sample Results
- F.4 Pilot Testing Water Quality Sample Results

Appendix I.	Policy Memo 97-005,	Extremely Impaired
	Sources	

Appendix J. Conceptualized Treatment Pre-Design and Cost Estimate for Extraction Well Alternative 3

Appendix A: Work Plan

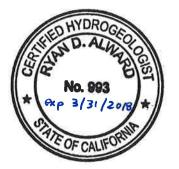


Work Plan for the South Y Extraction Well Suitability Investigation

South Lake Tahoe, California

Submitted to: South Tahoe Public Utility District

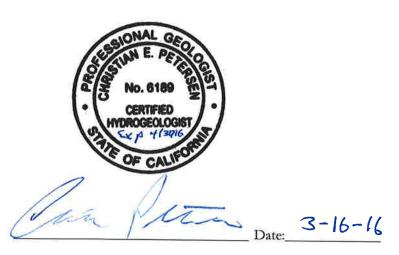
Date: March 16, 2016 Project No: 1601030


Page intentionally left blank

Work Plan for the South Y Extraction Well Suitability Investigation

Certifications and Seals

This work plan was prepared by the following GEI Consultants Inc. certified hydrogeologists:


Ryan 6

Date: 3-16-16

U

Ryan Alward

California Certified Hydrogeologist No. 993

Christian Petersen California Certified Hydrogeologist No. 463

Page intentionally left blank

TABLE OF CONTENTS

1.0 INTRODUCTION	1
1.1 Past Work	1
1.2 Recent Work Performed	1
1.3 Well Evaluation and Pilot Test Objectives	6
2.0 METHODOLOGY	7
2.1 Well Evaluation	7
2.2 Water Quality Sampling	10
2.3 Mechanical Well Cleaning and Development	15
2.4 Aquifer Testing	15
2.5 Pilot Testing	16
2.6 Obstruction Permit	17
2.7 Health and Safety	17
3.0 Reporting	
3.1 Evaluation of Well and Pilot Testing Data	
4.0 Schedule	
APPENDIX A. Equipment Photos, Equipment Specification	Sheets 23
APPENDIX B. Technical Specifications	24
APPENDIX C. Submersible Pump Curve	
APPENDIX D. Field Data Sheets	
APPENDIX E. Obstruction Permit	27

TABLES

Table 1: Roles and Responsibilities	8
Table 2: Water Quality Sampling and Analysis Plan	9
Table 3: Construction Summary	. 10
Table 4: Chemical Analysis Parameters for Groundwater	
Table 5: Potential Challenges and Possible Solutions	. 18

FIGURES

Figure 1: Project Location	. 3
Figure 2: Post-Video Survey LBWC Well #4 Well Details	. 4
Figure 3: Rockwater Well Details	. 5

1.0 INTRODUCTION

South Tahoe Public Utility District (District) has contracted with GEI Consultants Inc. (GEI), to perform an assessment of the Lukins Brothers Water Company (LBWC) Well #4. In 1989, water samples collected from LBWC Well #4 indicated elevated concentrations of tetrachloroethylene (PCE). The well has not been in service since 1994. GEI prepared this Work Plan for the South Y Extraction Well Suitability Investigation (work plan) to describe the approach and methods to evaluate the potential use of LBWC Well #4 as an extraction well and for pilot testing for the removal of PCE from extracted groundwater. The work plan will guide GEI and District staff as well as our contractor, Carson Pumps of Carson City, Nevada, to perform the work.

LBWC Well #4 is located on a ³/₄-acre parcel (APN 023-65-518) in a residential neighborhood at 843 Hazel Drive, within Section 5, T 12 N, R 18 E, MDBM, in the City of South Lake Tahoe, El Dorado County, California (Figure 1). The site has silt fencing on the north-east side of the property combined with waddles as a best management practice. The project does not consist of any excavations and all produced and treated water will be contained in temporary storage tanks and pumped directly to the sanitary sewer. A site layout was created for the obstruction permit, which is included in Appendix E.

The content and organization of this work plan is summarized in this section. Section 1.0, Introduction includes location and background information on the LBWC Well #4 and describes the well evaluation and pilot test objectives and plan organization. Section 2.0, Methodology describes all methods and procedures to be followed by GEI, Carson Pump, and the District to evaluate LBWC Well #4 and perform the pilot testing. Permitting of the work, including the sanitary sewer discharge requirements and the City obstruction permit, is also described in Section 2. Section 3 describes what will be included in the final report. Section 4 presents the schedule for completion of the project.

1.1 Past Work

GEI understands that LBWC Well #4 was constructed in 1966 with 12-inch-diameter steel casing using the cable-tool drilling method to a depth of 110 feet below ground surface (bgs). In 1970, the well was deepened with 10-inch-diameter steel casing to a total depth of about 174 feet bgs. Gravel was placed in approximately the bottom 30 feet of the uncased well to keep formation materials from heaving up into the well. In 1994, LBWC disconnected Well #4 from its water system. In September 2015, the total depth of the well was measured at 135 feet bgs, consistent with the information noted above.

A well log previously used by the District indicates that perforations are present from 43 to 63 feet bgs; 68 to 78 feet bgs; 105 to 115 feet bgs; and 132 to 155 feet bgs. The type of casing perforations (i.e., field cut, millknife, well screen, etc.) were not described in the driller's notes. The well is believed to have been operated at a rate of less than 130 gallons per minute (gpm). The historical pump setting depth is believed to be about 110 feet bgs (personal communication, Jennifer Lukins). The well pumped at about 30 gpm during groundwater sampling in 2015 (personal communication, Danny Lukins). Laboratory results from this sampling event indicated that PCE was detected at 34 micrograms per liter (ug/L).

During 2014 and 2015, the Lahontan Regional Water Quality Control Board (LRWQCB) collected groundwater samples from neighboring small community wells and private wells to evaluate the presence and extent of PCE contamination (personal communication, Lisa Dernbach, LRWQCB). Results from this timeframe indicated a PCE concentration of 230 ug/L in the Rockwater Well serving the Rockwater Apartments located at 787 Emerald Bay Road (see Figure 1). In 2015, the Rockwater Apartments were connected to the LBWC water system and the Rockwater Well was disconnected and abandoned.

1.2 Recent Work Performed

GEI contracted with Carson Pump to perform a down-hole video survey of LBWC Well #4 on February 17, 2016, as part of this investigation. The video survey indicated that the well construction details were different than previously assumed by the District. Figure 2 shows the well construction details as observed during the

video survey. GEI also inspected the abandoned Rockwater Well for potential use as an observation well for this investigation.

HydraSleeve© samplers were deployed for groundwater sample collection in the LBWC Well #4 and Rockwater Well. On March 3, 2016, the samplers were retrieved and water quality samples collected from this well and the Rockwater Well were used to characterize background water quality.

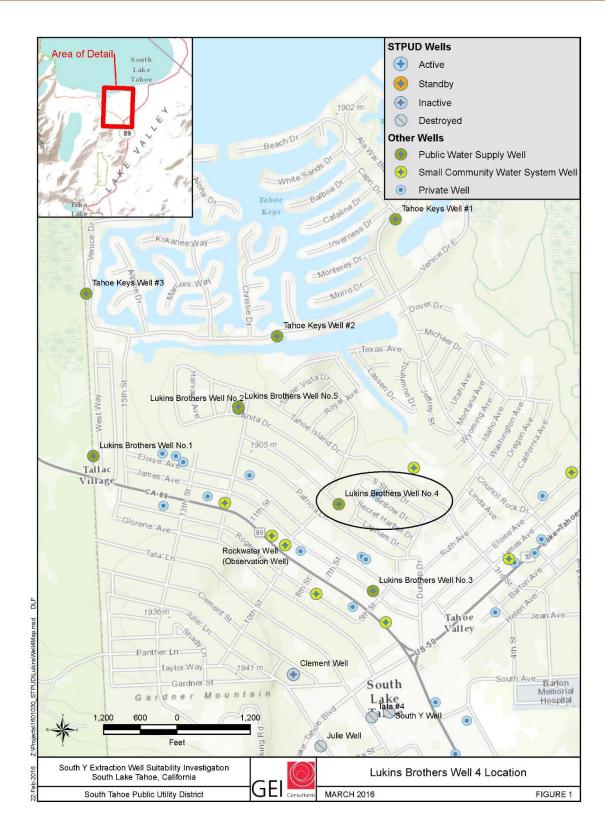


Figure 1: Project Location

SOUTH TAHOE PUBLIC UTILITY DISTRICT // DRAFT WORK PLAN FOR THE SOUTH Y EXTRACTION WELL SUITABILITY INVESTIGATION

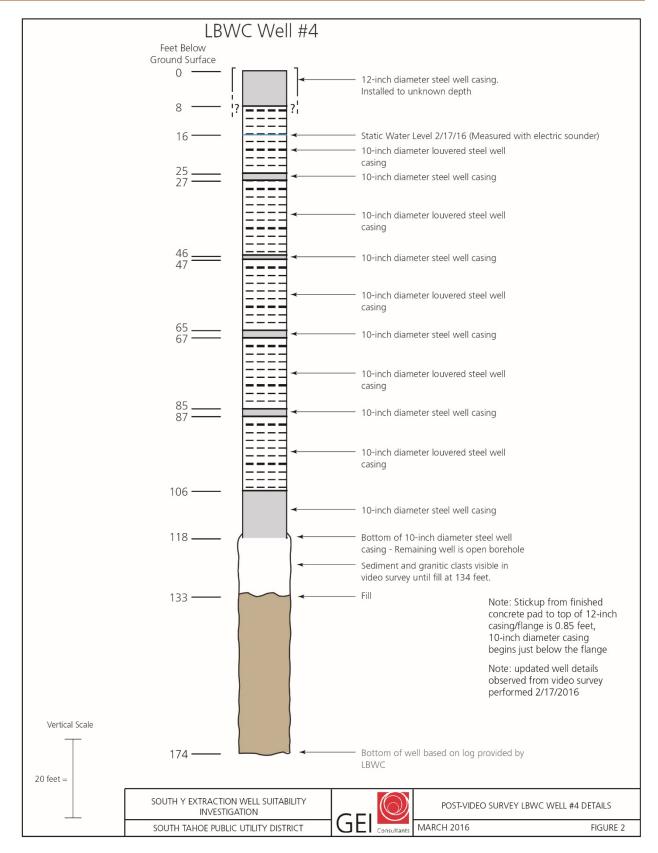


Figure 2: Post-Video Survey LBWC Well #4 Well Details

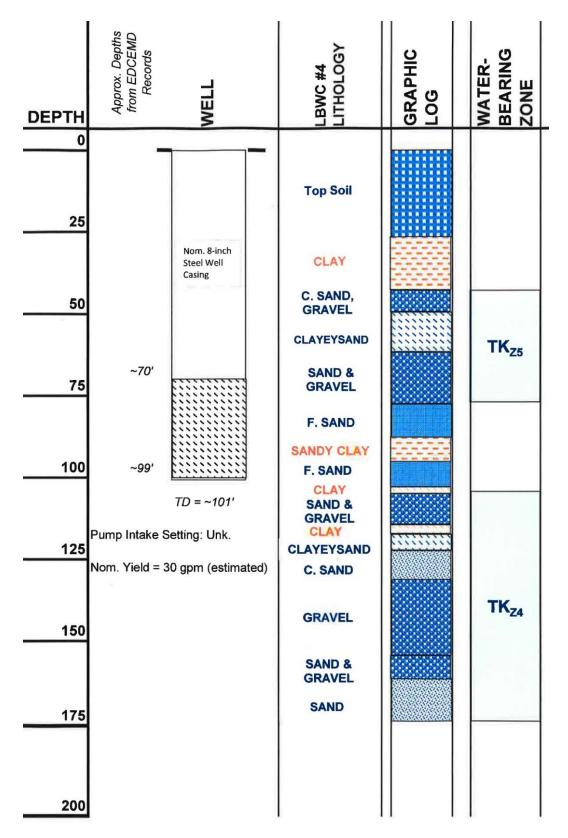


Figure 3: Rockwater Well Details

1.3 Well Evaluation and Pilot Test Objectives

GEI will provide technical oversight of Carson Pump to conduct an evaluation of LBWC Well #4 and accompanying water treatment system pilot test. This evaluation will identify primary flow paths of PCE into the well based on depth discrete sampling and a vertical flow survey, and establish aquifer properties needed to delineate capture zones(s) for the extraction well through a constant-rate aquifer test. The flow survey will allow GEI to quantify the percentage of the total flow contribution with relation to depth (vertical flow contribution). The aquifer characteristics calculated by the constant-rate test results will allow GEI to quantify the horizontal capture zones. The pilot treatment testing (pilot test) will also provide water quality data required to complete a pre-design for the accompanying treatment system.

For the pilot test, GEI has contracted with two vendors to provide alternative treatment systems. Evoqua will provide a granular activated carbon (GAC) filtration system that will be used to meet sanitary sewer discharge requirements throughout the project. NeoTech will provide a high efficiency ultra-violet (UV) light chamber and controller. Advanced oxidation process (UV/AOP) will be tested by adding a low dose of liquid sodium hypochlorite (chlorine). Traditionally, UV/AOP treatment systems used hydrogen peroxide as the primary oxidant to form hydroxyl radicals that decompose select contaminants. While hydrogen peroxide is a stronger oxidant than hypochlorite, recent research shows that hypochlorite effectively reacts with UV light to form hydroxyl radicals: a much stronger oxidant than peroxide or hypochlorite alone. The chlorine dose will be applied at dose rates that range from 1.0 part per million (ppm) up to 3.0 ppm measured as free chlorine. This dose range is expected to use a maximum of 0.072 gallons per hour.

GEI understands that total organic carbon (TOC) in LBWC Well #4 ranges from 0.5 to 2.75 parts per million (ppm). TOC concentrations less than 1 ppm are not likely to contribute to a significant level of disinfection byproduct formation; however, the higher range could contribute to forming trihalomethanes. The formation potential is difficult to predict because this depends on how much of the organic material is reactive. To characterize this, trihalomethanes will be analyzed (using VOC 524 method) at each chlorine dose considered during the pilot test.

During pilot testing, the treatment systems will be used in series with the UV/AOP expected to completely destroy the VOCs (PCE and TCE) and the GAC serving as a secondary treatment system to ensure compliance with discharge requirements. Since the project schedule is relatively short, it is not anticipated that GAC breakthrough curves will be established through the flushing filter. However, GEI is working with Evoqua to apply their proprietary test methods to evaluate actual carbon usage rates.

Rapid Small-Scale Column Tests were initially proposed; however, with a better project understanding (potential flow and water quality variables) and consultation with Evoqua Water Technologies experts, the recommended method to evaluate carbon performance involves application of their advanced modeling program (ad design) and dye testing, which accounts for the water chemistry from the pre-pilot test water quality sampling; site-specific variables as they are known at the end of the 24-hour constant-rate aquifer test; and carbon characteristics such as mesh size, pore structure, and iodine number. Due to the dye testing, the collection of other field parameters will not be necessary. Because of the number of complex variables that are input, this desktop modeling system provides a representative picture of carbon performance while allowing for more site flexibility. Modeling results will be reported and used to create preliminary design recommendations and cost estimates.

2.0 METHODOLOGY

This section describes the methods and equipment necessary for the well assessment, water quality sample collection and laboratory analyses, well development, aquifer characterization, and pilot testing. This section references photographs, dimensions, and where available, specifications for equipment to be used during the water quality sampling, flow survey and pilot testing (Appendix A). GEI field staff will oversee the subcontractors so the site activities follow the work plan and technical specifications. GEI will seek authorization from the District for any variances from the work plan that may be required. Field work will not begin until GEI has obtained all necessary permits, including the City of South Lake Tahoe obstruction permit. Table 1 lists the roles and responsibilities of the District, GEI, contractors, and vendors to complete the project including anticipated completion dates for each activity.

2.1 Well Evaluation

This task includes all field work associated with the project, including well cleaning and development, aquifer testing, constant-rate test, the dynamic flow survey and water quality sampling. During the constant-rate test, pilot testing will be used to assess the potential viability of using LBWC Well #4 as a PCE extraction well. Carson pump will provide the initial video survey (completed 2/17/2016), mechanical well cleaning and development services including installation and operation of the test pump. Carson Pump will also provide a bag filter capable of filtering sediments from the produced water, a mobile storage tank, and all necessary discharge piping/hoses to plumb the well to the pilot treatment systems and convey the treated water for disposal to the District's sanitary sewer system (Manhole TK191, shown in Appendix E, Figure E-1). The District will provide a small sodium hypochlorite pump and the sodium hypochlorite for the pilot test.

Table 2 describes each water quality sampling event in sequential order, the number of samples collected and analytical methods to be performed on each sample.

2.1.1 Static Well Video

A video survey was performed on February 17, 2016, by Carson Pump at LBWC Well #4. The results indicated that the well construction details are different than those provided by LBWC. Figure 2 is a well schematic based on new information provided by the video survey. The video survey indicates that the LBWC #4 well is constructed of 10-inch casing from ground surface to a total depth of 118 feet bgs. Louvered well casing was observed through the following depth intervals; 9 to 25 feet bgs; 27 to 46 feet bgs; 47 to 65 feet bgs; 67 to 85 feet bgs; and 87 to 106 feet bgs. Blank well casing extended below 106 feet bgs to a total depth of 118 feet bgs. The bottom of the casing was open to the underlying borehole, which extended to a depth of at least 133 feet bgs. Fill was encountered at 133 feet bgs.

GEI made a visual inspection of the Rockwater Well and some of the details observed differed from previous data. The well was found to be constructed with 6-inch steel casing with an 8-inch-diameter conductor casing. The static water level was measured at 38.78 ft btoc; total well depth was 81.05 ft btoc. The abandoned submersible well pump and column pipe were still installed in the well. The top of the pump is located at about 70 ft btoc. Figure 3 is a schematic of the Rockwater Well based on information provided to the District by the El Dorado County Environmental Management Department (EDCEMD). The EDCEMD data indicated the well was constructed with 8-inch-diameter steel casing from ground surface to a total depth of about 101 feet and perforated from about 70 to 99 feet bgs. When active, the well had a production rate of about 30 gpm.

Table 3 provides a comparison of well descriptions for the LBWC Well #4 from the provided driller's notes, and from the video survey and the available information from the EDCEMD for the Rockwater well.

SOUTH TAHOE PUBLIC UTILITY DISTRICT // DRAFT WORK PLAN FOR THE SOUTH Y EXTRACTION WELL SUITABILITY INVESTIGATION

Table 1: Roles and Responsibilities

No.	Task	Dates	District Staff	GEI Staff	Carson Pump	Pacific Surveys	Evoqua	NeoTech	Task Description
1	Initial Video Survey and Water Quality Sampling	2/17/2016	x	x	x				GEI and District staff will meet Carson Pump at the LBWC Well #4 site to perform an initial video survey. GEI will depoloy HydraSleeves in three zones in the well for water quality sampling. GEI will deploy one HydraSleeve into the Rockwater well to gather background water quality data.
2	Review Draft Work plan	2/23/16 to 3/4/16	x						District will provide review of the draft work plan.
3	Retrieve and Analyze Initial Water Quality Sampling	2/22/2016 to 2/26/2016	x	x					GEI staff will retrieve the HyrdaSleeves from LBWC Well #4 and Rockwater well and District staff will be available to assist and provide sample collection bottles, labels and will provide transporation to the laboratory.
4	Finalize Work Plan	3/8/2016 to 3/16/2016		x					GEI will incorporate any District comments and finalize the work plan.
5	Mobilize to Site	3/14/16 to 3/18/16		x	x		x	x	Carson Pump, Evoqua and NeoTech will deliver equipment to site. Carson Pump will plumb treatment system for discharge from well to 21,000 gallon tank, GAC and UV treatment systems and to sanitary sewer.
6	Mechanical Well Cleaning	3/22/2016		x	x				Carson pump will provide steel brush to scrub well casing and bailer and/or air-lift to clean fill out from well that is obstructing lower screen. GEI staff will be onsite to observe and provide documentation to the District.
7	Test Pump Installation	3/23/2016		x	x				Carson Pump will install submersible pump capable of pumping up to 150 gpm into the well and use on-site power and a VFD to control the flow rate. A 4-inch diameter access pipe will be installed to a depth below the pump bowls for flow survey tool access. GEI will document pump install.
8	Step-drawdown Test and Pre- Pilot Test Water Quality Sampling	3/24/2016		x	x				A 4-hour step test will be conducted with at least 3 steps to determine ideal pumping rate for 24-hour constant-rate test. Carson Pump will provide staff to measure water levels and operate the pump. A Rossum sand test device will be hooked to discharge and a flow totalizer and flow meter. GEI will observe and collect data. Water quality samples will be collected and analyzed. The results will be used to make recommendations for the Pilot Test. The District will provide sample bottles, ice chests, ice and chain-of-custody forms for GEI staff.
9	24-Hour Constant Rate and Pilot Testing	3/28/16 to 3/29/16		x	x				Carson Pump will provide staff to measure water levels and operate the pump. A Rossum sand test device will be hooked to discharge and a flow totalizer and flow meter. GEI will observe and collect data. Both GAC and UV/AOP treatment systems will be used to assess if UV may be a more cost-efficient, long-term alternative to GAC. Raw water samples will be collected pre-GAC filter and samples will be collected post-UV treatment during the pilot test. Sanitary sewer compliance will also be confirmed by the analysis of post-treament samples. The District will provide sample bottles, ice chests, ice and chain-of-custody forms for GEI staff.
10	Dynamic Flow Profiling and Water Quality Sampling	3/29/2016	x	x	x	x			Pacific Surveys will perform a dynamic flow survey using their spinner-log tool. Carson Pump will be onsite to operate pump and GEI will be onsite to observe the process and collect raw water samples for analysis. The District will provide sample bottles, ice chests, ice and chain-of-custody forms for GEI staff.
11	Test Pump Removal	4/1/2016		x	x				Carson Pump will be remove the test pump.
12	Demobilization and Site Clean Up	4/2/2016	x	x	x		x	x	Carson Pump, Evoqua and NeoTech will remove equipment from site and clean all trash.
13	Prepare Draft Report	4/3/2016 to 6/5/2016		x					GEI will prepare the draft final report for the project.
14	District Review Draft Report	6/6/2016 to 6/17/16	x						District will review the draft report provided by GEI and return comments and suggestions to GEI to incorporate into final draft.
15	Deliver Final Report	6/27/2016		x					GEI will provide final draft report to the District prior to the June 30, 2016 project deadline.

Note: Blue shaded cells indicate tasks where water quality samples will be collected. The quantity of analyses are listed in Table 2. The EPA sample methods and sample collection volume and bottle types are listed in Table 4.

Note: All on-site activities will be coordinated with the District and LBWC

Table 2: Water Quality Sampling and Analysis Plan

					Quantity	of Analyse	es		
Line Item	Sample Description	VOC EPA 524	Total Organic Carbon	Total Suspended Solids	General Mineral	Inorganic Chemical	BOD 5-Day	TPH-DRO, TPH- GRO	Field Parameters (UVT, EC, pH, Turbidity, Temp.) *
1	Initial Water Quality Sampling (up to 3 zones) - <i>Hydrasleeves will be deployed duing video survey and collected roughly 1 week later.One sample will be placed in the Rockwater well to be analyzed for VOC 524</i>	4 ¹	3						4 ¹
2	Pre-Pilot Test Water Quality Sampling: Used for Recommendations - <i>These samples will be collected prior to entering the treatment system during the Steptest. The VOC, General Mineral and TOC and TSS will need to have 1-day turn around. These samples will also verify discharge permit compliance.</i>	1	1	1	1	1	1	1	1
3	Raw Water Sampling Pre-GAC Filter - <i>These samples will be collected during</i> 24-hour constant-rate test to compare to post-treatment samples.	5							5
4	Post-UV Filter Sampling During Pilot Test - <i>These samples will be collected during the 24-hour aquifer test.</i>	5							5
5	Sampling for Sanitary Sewer Compliance - <i>Collected during the constant-</i> rate test, post-filtration, to determine discharge permit compliance.	1		1			1		1
6	Dynamic Flow Profile Survey Water Quality Sampling (up to 4 zones) - <i>This sampling will be peformed near the end of the 24-hour aquifer test immediately following the spinner survey.</i>	4	4						4
	Total of Samples to be analyzed by laboratory	20	8	2	1	1	2		20

Rush for general mineral, VOC, TOC, and general physical (LI#2) for data to be used for pilot test recommendations

Raw water sampling (LI#3) will apply to both UV and GAC pilot tests

UV treatment sampling (LI#4) will include UV alone at a dose of 1000 mJ/cm and UV/H202 or CL2 at various doses

¹ one sample will be collected from Hydrasleeve deployed in Rockwater well

The Bold text in the 'Sample Description' can be used as sample names to create labels from STPUD's LIMS system

Note: Select Analytes, laboratory methods and container requirements proposed for this investigation are provided in Table 4

Table 3:	Construction	Summary
----------	--------------	---------

		Description	_
Well Detail	LBWC	Well #4	Rockwater Well
	Well Log	Video Survey 2/17/16	Well Log
Total Well Depth	174 feet bgs	Unknown - Fill encountered 133 feet bgs	101 feet bgs
Casing/Screen Material	Steel	Steel	Steel
Casing Diameter	12-inch: -0.85 - 118 feet bgs 10-inch: 118 - 174 feet bgs	12-inch: -0.85 - Unknown 10-inch: -0.8 - 118 feet bgs	6-inch
Perforation Type	Unknown	Louvered	Unknown
Perforated Intervals	43 - 63 feet bgs 68 - 78 feet bgs 105 - 115 feet bgs 132 - 155 feet bgs	8 - 25 feet bgs 27 - 45 feet bgs 47 - 65 feet bgs 67 - 85 feet bgs 87 - 106 feet bgs 118 - Bottom: Open	70 - 99 feet bgs

2.2 Water Quality Sampling

Samples will be strategically collected at various intervals to guide decision-making throughout the project. The video survey and initial water quality sampler deployment has been completed. The sample collection for laboratory analysis and background water quality characterization has been scheduled for March 3, 2016.

2.2.1 Initial Water Quality Sampling and Analysis – Rationale and Constituents of Interest

The objective of this sampling is to characterize groundwater quality at LBWC Well #4 for water treatment efficacy. Groundwater samples will be analyzed for constituents critical to the pilot test including General Mineral, Volatile Organic Compounds (VOCs), and Total Organic Carbon (TOC) as listed in Table 4. These constituents impact treatment efficacy as they act as scavengers to UV light absorption and compete for pore space in GAC filtration. The sample tests are requested on standard turnaround time; these results will be included in the final report to document background water quality and identify constituents required for water treatment.

The initial samples were collected using HydraSleeve samplers deployed on February 17, following the initial video survey. The HydraSleeves remained in the well to equilibrate and were retrieved on March 3 for sample collection and laboratory analysis. The HydraSleeves were set at three depth intervals within the well—100 to 107 feet bgs, 85 to 78 feet bgs and 65 to 58 feet bgs. To get enough volume for sample collection, two HydraSleeves were placed in tandem at each depth interval. The length of the two HydraSleeves in tandem is roughly six-feet in length.

One HydraSleeve was also placed into the Rockwater well at a depth of 60 feet bgs and the sample collected will be analyzed for VOCs. The sample from the Rockwater well was collected the same day as from LBWC Well #4. GEI notified the District of the sample event and District staff were onsite for the sample collection. The rationale for the analyses for both wells is described below.

2.2.2 Pre-Pilot Test Water Quality Sampling

The objective of the pre-pilot test water quality sampling is to confirm that all water entering the sanitary sewer meets District discharge requirements. Initial pump start-up water quality verification samples will be collected during the step-test and will be analyzed for VOCs and TOC. These samples will be analyzed prior to discharging to the sanitary sewer for the following analytes: pH, total dissolved solids (TDS), total suspended solids (TSS), 5-Day Biological Oxygen Demand (BOD), and VOCs (refer to Table 4 for laboratory

method and sample container requirements). Results from this water sampling will also be used to identify potential water treatment system requirements.

2.2.3 Pilot Test Water Quality Sampling

The objective of pilot test water quality sampling is to determine treatment efficacy and confirm sanitary sewer discharge requirements are met. Items 3 through 5 from Table 2 call for a series of raw and treated VOC samples. The numerous Field Test parameters (see Table 4) will be used to support decision-making during the pilot test. Ultraviolet absorbance (UV_A) is used to determine the amount of reactive organic material dissolved in the water. While this is not traditionally used as an indicator for UV pilot testing, it may provide some nonlinear insight to explain the dissolved PCE concentrations anticipated in the groundwater samples. Ultraviolet transmittance (UVT) is important to ensuring that the UV light is effectively transmitting through the water. Turbidity is a method to quantify and provide field understanding for potential interference of UVT. Temperature, pH, and electrical conductivity (EC) are general indicators of stability or changes in water quality; these indicators will be used to guide decision-making and to determine if modifications are needed to the sampling protocol during pilot testing. Samples to confirm sanitary discharge compliance will be collected near the end of the pilot test.

There are several analytes that are critical to the UV pilot test: total hardness as CaCO3, dissolved iron, manganese, turbidity, and TSS. Based on the background water quality data reviewed, these minerals are not expected to be a significant issue. The greatest concern is cloudiness caused by turbidity/TSS or possibly entrained air as a result of recent well cleaning. A bag filter will be provided onsite for pre-filtration, prior to water treatment, which is expected to mitigate any significant interference.

TOC poses the greatest threat to effective GAC filtration as it competes for pore space that could be used for PCE removal. Generally, TOC concentrations greater than 0.5 ppm are more strongly considered as an interference. Understanding this potential treatment interference is most important for ensuring that optimal PCE removal is maintained to meet District sanitary sewer requirements. As a precaution, this was considered in selecting the onsite carbon filter media as 12x30 coconut shell, which has enough diverse pore size distribution to balance TOC and PCE adsorption.

2.2.4 Dynamic Flow Survey and Discrete Water Quality Sampling

The objective of this sampling event is to characterize and quantify the flow zones contributing PCE to LBWC Well #4. During the constant-rate aquifer test a dynamic flow survey will be conducted by Pacific Surveys. This dynamic flow survey will quantify the flow contribution to the well with respect to different perforation depths. The results from the survey will indicate the depths at which the majority of the flow is entering the well and will be used to estimate the vertical hydraulic conductivity distribution through the well. Based on these data, GEI will recommend that water quality samples are collected from up to four (4) zones that contribute the most flow to the well. Pacific Surveys has a tool that will allow the collection of water samples from the well at discrete depths. The results will determine the water quality entering at different depths within the well. Line item 6 - Dynamic Flow Survey South Y Sampling and Analysis plan lists the analyses that will be sampled, which are General Mineral, VOCs, and TOC (see Table 4). Appendix A contains Pacific Surveys literature regarding the spinner/flowmeter and discrete sampling tools.

Page intentionally left blank

Table 4: Chemical Analysis Parameters for Groundwater

Analyte	Method	Units	Volume, Bottles & Preservatives
Field Test			
oH (Field)	Field	Units	
Conductivity	Field	µmhos/cm	
Temperature	Field	Deg C	STRUP supplied bandhold meter
BOD	Field	mg/L	STPUD supplied handheld meter and HACH DR 2400
JVT	Field	% transmittance	
Furbidity	Field	NTU	
Fotal Chlorine	Field	mg/L	
General Mineral			
DH	4500-H B	units	
Fotal Alkalinity (as CaCO3)	2320B	mg/L	
Hydroxide as OH	2320B	mg/L	250 mL unpreserved plastic
Carbonate as CO3	2320B	mg/L	
Bicarbonate as HCO3	2320B	mg/L	
Total Hardness as CaCO3	200.7	mg/L	
Calcium Magnosium	200.7	mg/L	
Vlagnesium Potassium	200.7	mg/L	125 mL unpreserved plastic
Sodium	200.7	mg/L mg/L	
Total Cations	200.7		
Sulfate	300.0	meq/L mg/L	
Chloride	300.0		
Nitrate as NO3	300.0	mg/L	
Nitrite as N	300.0	mg/L mg/L	
Nitrate + Nitrite as N	300.0	mg/L	
Fluoride	300.0		
Total Anions	2320B	mg/L meq/L	1L unpreserved plastic
Total Suspended Solids	160.4	mg/L	
Specific Conductance	2510B	μmhos/cm	
Total Dissolved Solids	2540CE	mg/L	
Aggressiveness Index	4500-H B		
Langelier Index (20°C)	4500-H B		
General Physical			
Turbidity	Field	NTU	Field Meter
5-Day BOD	Field and/or SM		DR 2400 and/or 1000 mL
,	5120B	mg/L	unpreserved plastic
norganic Chemical			· ·
Aluminum	200.8	μg/L	
	200.8	μg/L	
Antimony Arsenic	200.8		
		μg/L	
Barium	200.8	μg/L	
Beryllium	200.8	μg/L	
Boron	200.8	μg/L	
Cadmium	200.8	μg/L	
Chromium Connor	200.8	μg/L	
Copper	200.8	μg/L	500 mL unpreserved plastic
lron Lead	200.8	μg/L	
	200.8	μg/L	
Manganese Nickel	200.8	μg/L μg/L	
Selenium	200.8	μg/L μg/L	•
Silver	200.8	μg/L μg/L	1
Thallium	200.8	μg/L μg/L	
/anadium	200.8	μg/L μg/L	4
Zinc	200.8	μg/L μg/L	4
Mercury	200.8	μg/L μg/L	
Other Inorganics	200.0	μ <u>β</u> / ∟	
Total Organic Carbon	SM 5310C/EPA 415.3	3 mg/L	3x40 mL preserved VOA vials
TPH-DRO	SM 8015	μg/L	1000 mL amber glass bottle
	SM 8015	μg/L	2x40mL unpreserved VOA vial
PH-GKO			
IPH-GRO /olatile Organics	5101 8015	F8/ -	

Page intentionally left blank

2.3 Mechanical Well Cleaning and Development

After the initial water quality samples are collected, the well will be mechanically cleaned and prepared for the step-test and constant-rate test. Carson Pump will use a steel brush to remove growth from the well casing in the perforated intervals. After the brushing is complete they will use a bailer and remove the accumulated sediment from the bottom of the well, and will also remove the sediment to a depth of at least 135 feet bgs, the depth at which fill was encountered during the video survey. Technical specifications for Carson Pump are provided in Appendix B. The curve for the temporary submersible pump that will be used for this project is provided in Appendix C.

2.3.1 Waste Disposal

Mechanical well cleaning will generate relatively small volumes of waste-containing debris and sediment removed from the well. These wastes will be placed directly into a portable storage bin for subsequent transport and disposal by the pump contractor (Carson Pump) outside the Lake Tahoe Basin.

2.3.1.1 Treatment System Discharge

Treated water quality is expected to meet drinking water standards. The source water is expected to contain high concentrations of VOCs (PCE and, potentially, breakdown by-products, such as trichloroethene (TCE), dichloroethene (1,2-DCE) and vinyl chloride (VC)), which will be completely removed through the GAC filtration system. Based on review of the available water quality data provided by the District for the South Y wells, these chlorinated hydrocarbons are believed to be the primary contaminants of concern. Trace levels of total petroleum hydrocarbon (TPH) compounds and fuel oxygenates (Methyl tert-butyl ether) are also likely to occur at concentrations below applicable drinking water standards.

2.4 Aquifer Testing

GEI will perform a four-hour step-test to determine the most suitable pumping rate for a 24-hour constantrate test. A submersible pump capable of pumping up to 165 gpm will be set to a depth of about 110 feet bgs in the LBWC Well #4. This depth was selected based on personal communication with Jennifer Lukins of LBWC where she told GEI that it is believed that the previous permanent pump was set at about 110 feet bgs. GEI does not have any previous specific capacity data for the well to estimate a drawdown based on a pumping rate and potential drawdown. We understand that the historical pumping rate has been between 50 gpm and 130 gpm. During these aquifer tests the produced water will be filtered through a GAC filtration system that will also be used for pilot testing. The step and constant-rate details are provided in the technical specification 330120-460 Well and Aquifer Testing in Appendix B.

The water will be filtered prior to pumping into the sanitary sewer. We will estimate aquifer hydraulic characteristics based on lithology and the aquifer test results. We will use a pressure transducer to record groundwater levels at one-minute intervals for at least one week prior to performing the test to obtain background groundwater levels at both the LBWC Well #4 and the Rockwater observation well to identify nearby pumping wells that may affect the test results. Pressure transducer details are presented in Appendix A. The test results will be analyzed using a commercially available aquifer test analysis program.

The flow survey will be performed under dynamic conditions using a standard spinner tool that will be lowered into the well while the well is being pumped by Carson Pumps during the constant-rate test. A description of the spinner tool is provided in Appendix A. GEI will use specific field data sheets for the aquifer testing, mechanical cleaning and water quality sampling. Examples of these sheets are provided in Appendix D.

2.5 Pilot Testing

GEI will use GAC treatment during the pilot testing to meet discharge requirements. Evaluation of the spent carbon in this treatment vessel can provide valuable filed validation of the modeling results. Using a sample of the spent carbon, Evoqua will perform a dye test to evaluate fouling potential. However, the filter is not expected to be fully utilized and, therefore, will not likely represent full-scale dynamic flow conditions. Since pilot scale data cannot be derived from the onsite treatment unit, alternative carbon performance tests (as discussed in Section 1.3), such as advanced modeling and dye testing the used carbon, will be used to develop carbon recommendations and cost estimates. UV/AOP will be pilot tested onsite. Test procedures are detailed in the following paragraphs. An aquifer test and treatment setup diagram is provided in Appendix B, Figure B-1.

The reasoning for testing using both GAC and UV/AOP is to establish efficiency and pre-design parameters for a full-scale remediation system. Due to the size of LBWC Well #4 and the relatively low discharge rate, GEI believes that potentially high concentrations of PCE may prove that the selected high-efficiency UV system may be a more cost-efficient, long-term alternative to GAC.

The UV/AOP treatment process will be tested onsite. The UV chamber and controller are pictured below. A schematic showing the equipment set-up is provided at the end of Appendix B (Figure B-1). The UV/AOP unit operates off standard power (120v); a minimum of two power outlets are recommended to accommodate the UV system and dosing pump. Initial setup will include pressurizing the chamber; warming the lamps; activating the controller; allowing the controller to stabilize for at least 10 hours prior to operation (recommended by manufacturer); and performing some initial water quality tests (UVT, pH, and temp). The UV unit is vulnerable to freezing and should be protected to maintain water temperature above 32°F. However, due to the small size and volume of water and the fact that water will not be flowing through the unit at night, we do not anticipate any issues with freezing. The UV chamber will be operated in a horizontal position on a table. Advanced oxidation will be achieved through the addition of a low dose of liquid sodium hypochlorite (expected dose range of 1 to 2 pm). A simple depiction of the treatment process flow is as follows:

well head \rightarrow bag filter \rightarrow pressure gauge \rightarrow dosing pump \rightarrow UV chamber \rightarrow GAC \rightarrow discharge

Pilot testing will begin early Tuesday morning, March 29, 2016, and is expected to take between six and eight hours to complete. During the pilot test, the UV dose will remain constant at $\geq 1000 \text{ mJ/cm}^2$. Variations to the test scenarios will be the oxidant (chlorine) dose and monitoring field water quality parameters that will enable us to make decisions on operational changes. Field water-quality tests will be conducted to verify the chlorine dose and to document water quality during the test. The maximum chlorine dose will be 3 ppm, which can be measured in the high range of a standard field test kit. Raw and treated laboratory samples will be collected throughout the test to determine performance results (items 3 and 4 on Table 2).

2.6 Obstruction Permit

GEI will submit an Obstruction Permit request to the City of South Lake Tahoe for approval to lay discharge hose onto Hazel Drive to the sanitary sewer discharge point in the cul-de-sac about 25-feet northwest of the LBWC Well #4 property line. The discharge hose/pipe will only be used during the discharge periods and will not be left unattended or overnight. The obstruction permit includes a traffic control plan included as Appendix E. At the time of this work plan, the obstruction permit is being approved by the City and the final permit will be included in the final report for this project.

2.7 Health and Safety

GEI will provide a site-specific Health and Safety Plan (HASP) that will be followed by GEI staff. The plan will indicate standard procedures for reacting to emergencies and will provide emergency contact information and directions to local occupational health clinics and emergency rooms. GEI staff will have a hardcopy of the HASP in the field. GEI requires that all contractors and subcontractors follow their own respective HASPs.

3.0 REPORTING

GEI will prepare a technical report describing all well inspection, mechanical cleaning, profiling, depth discrete water quality sampling, and treatment system pilot testing activities. The report will summarize our well evaluation findings and our recommendations for the design of a future treatment system for LBWC Well #4. Our report will also provide the recommended treatment technology and conceptual-level costs. All supporting documentation, including video well inspection reports, field records, photos, flow logs, and laboratory reports shall be presented in appendices to the technical report.

3.1 Evaluation of Well and Pilot Testing Data

GEI will evaluate the well characterization, aquifer profiling, aquifer testing, and pilot testing results collected in the subtasks listed above. GEI will focus our evaluation on the following objectives:

- Characterize aquifer parameters for use in determining the vertical hydraulic conductivity distribution through the well; calculating capture zones; and required extraction rates that may be needed for the removal of PCE-laden groundwater from LBWC Well #4 and the neighboring area.
- Evaluate pilot testing results to select a preferred alternative and prepare a pre-design for a full-scale wellhead treatment system.
- Using the information collected during the investigation consider LBWC Well #4 as a potential extraction well or an alternate well design that may be better suited for the removal of dissolved contaminants through this area.

As with any project there are potential challenges that may need to be mitigated. Table 5 lists a few potential challenges and possible solutions.

Table 5: Potential Challenges and Possible Solutions
--

Po	tential Challenges and Possible Solutions
Potential Challenge	Mitigation Measure
Inclement Weather Creating Project	GEI staff have all-weather capable field vehicles, the pilot-treatment systems will not
Delays	be affected by weather. The UV system can be set-up inside the pump house or a
	small shelter will be devised. We selected a subcontractor that is local to the area and
	understands working in Tahoe weather.
Site noise levels/Neighbor concerns	The submerisble pump and UV filter will be powered by an onsite generator that will
	be positioned to minimize noise.
GAC filters prematurely clogging as	We will use a combination of settling tanks, bag filters and backwashing of the filters
a consequence of excessive	will be employed to remove fines from the GAC filter feed water and we will have a
sediment in discharge water	pressure gauge on the GAC filters to closely monitor pressure as a preventative
	measure.
Concentrations of PCE are still	GEI would discuss the data with the District and determine if pumping and sampling
rising at end of 72-hour constant-	should continue for a longer period of time until PCE results stabilize. This would
rate test	allow for the best possible data for treatment pre-design. GEI will be monitoring field
	parameters as an instantaneous water quality indicator. This may also require rush
	results on VOC 524 analyses.
Other	As unforseen challenges arise GEI in corrdination with the District and LBWC will
	meet and confer to identify appropriate measures.

4.0 SCHEDULE

Based on our understanding of the project, we present the following schedule, including major tasks, deadlines, duration, and projected start and finish dates for the project.

Page intentionally left blank

			Schedul	e for South Y Ex	tracti	ion Wel	ll Suitab	ility Inve	stigatio	n						
ID	Task Name	Duration	Start	Finish	L6 11	18 25	Feb '1		Mar 29			Apr'16 8 4 1	May 5 2	'16 9 16 23	Jun 8 30 6	Jul' 0 27 4
1	NTP	1 day	Thu 1/21/16	Thu 1/21/16												
2	Task 1 - Data Collection	14 days	Fri 1/22/16	Thu 2/4/16			-									
3	Task 1.1 Data Collection	1 day	Fri 1/22/16	Fri 1/22/16		 1/2 	2									
4	Task 1.2 Kick-off meeting and site visit (with key contractor reps)	1 day	Mon 2/1/16	Mon 2/1/16			•									
5	Task 1.3 Data Review and Assessment of Current Well Condition	14 days	Fri 1/22/16	Thu 2/4/16		0										
6	Task 2 - Develop Work Plan	43 days	Mon 2/1/16	Mon 3/14/16			-									
7	Task 2.1 Develop draft work plan including evaluation of Pilot Treatment Alternatives	22 days	Mon 2/1/16	Mon 2/22/16												
8	Review by District	11 days	Tue 2/23/16	Fri 3/4/16												
9	Task 2.2 Meet with district to discuss draft work plan	1 day	Mon 3/7/16	Mon 3/7/16					•	3/7						
10	Task 2.3 Finalize work plan and contract documents	7 days	Tue 3/8/16	Mon 3/14/16												
11	Task 3 - Data Collection & Evaluation	96 days	Wed 2/17/16	Sun 5/22/16												
12	Task 3.1 Static Well Profiling	31 days	Wed 2/17/16	Fri 3/18/16												
13	Initial video survey and Water quality sampling	1 day	Wed 2/17/16	Wed 2/17/16				н								
14	Carson Pump mobilize to site	5 days	Mon 3/14/16	Fri 3/18/16												
15	Task 3.2 Mechanical Well Cleaning	2 days	Tue 3/22/16	Wed 3/23/16												
16	Mechanical cleaning	1 day	Tue 3/22/16	Tue 3/22/16							H					
17	Install pump	1 day	Wed 3/23/16	Wed 3/23/16							1					
18	Task 3.3 Step and Constant-Rate Aquifer Testing	6 days	Thu 3/24/16	Tue 3/29/16												
19	Step-drawdown test	1 day	Thu 3/24/16	Thu 3/24/16												
20	24-hour constant-rate test and Dynamic Flow Profile and Zone Sampling	2 days	Mon 3/28/16	Tue 3/29/16												
21	Task 3.4 Pilot Testing	29 days	Mon 3/28/16	Mon 4/25/16												
22	Perform pilot testing	2 days	Mon 3/28/16	Tue 3/29/16												
23	Pilot Testing Status Meeting (End or Continue Test)	1 day	Tue 3/29/16	Tue 3/29/16							•	3/29				
24	Optional - Extend Pilot Testing up to 3 W	22 days	Fri 4/1/16	Fri 4/22/16												
25	Task 3.5 Evaluation of Well and Treatment Testing Data and Development of Well Improvements and Treatment Pre-Design		Tue 4/26/16	Sun 5/22/16												
26	Task 4 - Technical Report	43 days	Mon 5/16/16	Mon 6/27/16										-		-
27	Draft Report	19 days	Mon 5/16/16	Fri 6/3/16												
28	Review by District	12 days	Mon 6/6/16	Fri 6/17/16												
29	Final Report	8 days	Mon 6/20/16	Mon 6/27/16												

ID

SOUTH TAHOE PUBLIC UTILITY DISTRICT // WORK PLAN FOR THE SOUTH Y EXTRACTION WELL SUITABILITY INVESTIGATION

Page intentionally left blank

SOUTH TAHOE PUBLIC UTILITY DISTRICT // WORK PLAN FOR THE SOUTH Y EXTRACTION WELL SUITABILITY INVESTIGATION

APPENDIX A. EQUIPMENT PHOTOS, EQUIPMENT SPECIFICATION SHEETS

GEI Field Equipment

PO Box 28220 . Bellingham . WA 98228 Phone/Fax: 360.676.9635 Email: contact@waterlineusa.com

PRODUCTS

Home Products

Parts &

Service

Order

Contact

Accessories

Our instruments are complete and ready to use and come with a 1 year warranty (parts and labor) for defects of material or workmanship.

Probe:

A thin, stainless steel, and highly sensitive sensor, with segmented weights, which allows easy access, even through a $\frac{1}{2}$ inch bolt hole, and indicating water within a fraction of an inch.

Reel:

Free standing durable plastic reel in various sizes with central brake system on strong metal frame. 1000 foot and larger sizes have metal reel.

Our standard reel

Electronics which consists of:

1. A **select switch** with 4 positions:

- Off when not in use to avoid draining the battery.
- Test to check battery, light and buzzer will operate together.
- **LED** for visual signal, ultra bright LEDs light up when probe reaches water.
- **Buzz** for audible signal, buzzer sounds when probe reaches water.

2. A sensitivity switch - adjusts the probes sensitivity in individual wells and helps avoid false readings in cascading water.

3. A **battery drawer** – for one 9 volt battery.

Cable and Tape Types:

1. **Coaxial cable**: a strong, highly flexible, lightweight cable, 1/10th inch diameter, with exclusive color coded marks every 5 feet that are chemically welded and will not slip or cut your hands.

2. Tape: a very strong, flexible, 3/8th inch wide, steel tape with 2 stainless steel conductors with 3 different measuring scales:

- Engineering Scale: marked in feet, tenths, and hundreds of feet
- Standard Scale: marked in feet, inch, and 1/8 inch
- Metric Scale: marked in meters, centimeters, and millimeters

3. Bottom Sounder: non-electric, for measuring sand pack and hole depth with a heavy stainless steel weight.

Click here for a detailed price chart

Home | Products | Parts & Accessories | Service | Order | Contact

© Waterline Envirotech Ltd

Proudly Made In the USA For Over 30 Years

Level TROLL[®] 400, 500 & 700 Data Loggers

Get water level data the way you want it, when you want it with industry-leading water level/pressure and temperature data loggers. By partnering with In-Situ, you receive durable Level TROLL® Data Loggers that provide years of service, accurate results, intuitive software, and real-time functionality.

Be Effective

- Increase productivity: Reduce training and installation time with In-Situ intuitive software platform and integrated components. Patented twist-lock connectors, included on Level TROLL Loggers and RuggedCable[®] Systems, ensure error-free deployments.
- Streamline analysis and reporting: Automate water level corrections and post-processing, graph data, and accelerate report generation with Win-Situ® Software. Easily export data to Excel,® a web-based management service, or data analysis software.
- Set up real-time networks: Access data 24/7 and receive event notifications when you connect data loggers to Tube and Cube systems, radios, or other third-party data collection platforms. Get decision quality data when, where, and how you need it with HydroVu Data Services. Control gates, pumps, alarms, and other equipment by using built-in Modbus/RS485, SDI-12, or 4-20 mA communication protocols.

Be In-Situ

- Receive free, 24/7 technical support and online resources.
- Order data loggers and accessories from the In-Situ website.
- Get guaranteed 7-day service for maintenance (U.S.A. only).

CALL OR CLICK TO PURCHASE OR RENT

1-800-446-7488 (toll-free in U.S.A. and Canada) **1-970-498-1500** (U.S.A. and international)

WWW.IN-SITU.COM

Be Reliable

- **Deploy in all environments:** Install loggers in fresh water, saltwater, and contaminated waters. Solid titanium and sealed construction outperforms and outlasts coated data loggers.
- Log accurate data: Get optimal accuracy under all operating conditions. Sensors undergo NIST®-traceable factory calibration across the full pressure and temperature range. For applications requiring the highest levels of accuracy, use a vented (gauged) system.
- **Get long-lasting operation:** Reduce trips to the field with low-power loggers that typically operate for 10 years.

Applications

- Aquifer characterization: slug tests & pumping tests
- Coastal: tide/harbor levels & wetland/estuary research
- Hydrologic events: crest stage gages, storm surge monitoring, & flood control systems
- Long-term, real-time groundwater & surface water monitoring
- Mining & remediation

Level TROLL[®] 400, 500 & 700 Data Loggers

Spec Sheet

General	Level TROLL 400	Level TROLL 500	Level TROLL 700	Level BaroTROLL
Temperature ranges ¹	Operational: -20-80° C (-4-176° F) Storage: -40-80° C (-40-176° F) Calibrated: -5-50° C (23-122° F)	Operational: -20-80° C (-4-176° F) Storage: -40-80° C (-40-176° F) Calibrated: -5-50° C (23-122° F)	Operational: -20-80° C (-4-176° F) Storage: -40-80° C (-40-176° F) Calibrated: -5-50° C (23-122° F)	Operational: -20-80° C (-4- 176° F) Storage: -40-80° C (-40-176° F) Calibrated: -5-50° C (23-122° F)
Diameter	1.83 cm (0.72 in.)	1.83 cm (0.72 in.)	1.83 cm (0.72 in.)	1.83 cm (0.72 in.)
Length	21.6 cm (8.5 in.)	21.6 cm (8.5 in.)	21.6 cm (8.5 in.)	21.6 cm (8.5 in.)
Weight	197 g (0.43 lb)	197 g (0.43 lb)	197 g (0.43 lb)	197 g (0.43 lb)
Materials	Titanium body; Delrin® nose cone	Titanium body; Delrin nose cone	Titanium body; Delrin nose cone	Titanium body; Delrin nose cone
Output options	Modbus/RS485, SDI-12, 4-20 mA	Modbus/RS485, SDI-12, 4-20 mA	Modbus/RS485, SDI-12, 4-20 mA	Modbus/RS485, SDI-12, 4-20 m/
Battery type & life ²	3.6V lithium; 10 years or 2M readings	3.6V lithium; 10 years or 2M readings	3.6V lithium; 10 years or 2M readings	3.6V lithium; 10 years or 2M readings
External power	8-36 VDC	8-36 VDC	8-36 VDC	8-36 VDC
Memory	2.0 MB	2.0 MB	4.0 MB	1.0 MB
Data records³ Data logs	130,000 50 logs	130,000 50 logs	260,000 50 logs	65,000 2 logs
Fastest logging rate	2 per second	2 per second	4 per second	1 per minute
Fastest output rate	Modbus: 2 per second SDI-12 & 4-20 mA: 1 per second	Modbus: 2 per second SDI-12 & 4-20 mA: 1 per second	Modbus: 2 per second SDI-12 & 4-20 mA: 1 per second	Modbus: 2 per second SDI-12 & 4-20 mA: 1 per second
Log types	Linear, Fast Linear, and Event	Linear, Fast Linear, and Event	Linear, Fast Linear, Linear Average, Event, Step Linear, True Logarithmic	Linear
Sensor Type/Material	Piezoresistive; titanium	Piezoresistive; titanium	Piezoresistive; titanium	Piezoresistive; titanium
Range	Absolute (non-vented) 30 psia: 11 m (35 ft) 100 psia: 60 m (197 ft) 300 psia: 200 m (658 ft) 500 psia: 341 m (1120 ft)	Gauged (vented) 5 psig: 3.5 m (11.5 ft) 15 psig: 11 m (35 ft) 30 psig: 21 m (69 ft) 100 psig: 70 m (231 ft) 300 psig: 210 m (692 ft) 500 psig: 351 m (1153 ft)	Absolute (non-vented) 30 psia: 11 m (35 ft) 100 psia: 60 m (197 ft) 300 psia: 200 m (658 ft) 500 psia: 341 m (1120 ft) 1000 psia: 693 m (2273 ft) Gauged (vented) 5 psig: 3.5 m (11.5 ft) 15 psig: 11 m (35 ft) 30 psig: 21 m (69 ft) 100 psig: 70 m (231 ft) 300 psig: 210 m (692 ft) 500 psig: 351 m (1153 ft)	30 psia (usable up to 16.5 psi; 1.14 bar)
<i>Accuracy</i> ^₄	±0.05% full scale (FS) ±0.1% FS	±0.05% FS ±0.1% FS	±0.05% FS ±0.1% FS	±0.05% FS ±0.1% FS
Resolution	±0.005% FS or better	$\pm 0.005\%$ FS or better	$\pm 0.005\%$ FS or better	$\pm 0.005\%$ FS or better
Units of measure	Pressure: psi, kPa, bar, mbar, mmHg, inHg, cmH2O, inH2O Level: in., ft, mm, cm, m	Pressure: psi, kPa, bar, mbar, mmHg, inHg, cmH2O, inH2O Level: in., ft, mm, cm, m	Pressure: psi, kPa, bar, mbar, mmHg, inHg, cmH20, inH20 Level: in., ft, mm, cm, m	Pressure: psi, kPa, bar, mbar, mmHg, inHg, cmH20, inH20
Temperature Sensor	Silicon	Silicon	Silicon	Silicon
Accuracy	±0.1° C	±0.1°C	±0.1° C	±0.1° C
Resolution	0.01° C or better	0.01° C or better	0.01° C or better	0.01° C or better
Units of measure	Celsius or Fahrenheit	Celsius or Fahrenheit	Celsius or Fahrenheit	Celsius or Fahrenheit
Warranty	3 years	3 years	3 years	3 years
Notes	parameters logged (no wrapping) from	device within the factory-calibrated tempe to 5-year (total) extended warranties are av	n the factory-calibrated temperature range. rature range. ⁴ Across factory-calibrated pres ailable for all sensors—call for details. Delri	sure range. ⁵ Across factory-calibrated

€ F© 🕱

CALL OR CLICK TO PURCHASE

1-800-446-7488 (toll-free in U.S.A. and Canada) **1-970-498-1500** (U.S.A. and international)

WWW.IN-SITU.COM

221 East Lincoln Avenue, Fort Collins, CO 80524 USA Copyright © 2013 In-Situ Inc. All rights reserved. Nov. 2015 (T3; 2K)

Jse maintenance-free, non-vented systems for ong-term monitoring and at flood-prone or high-humidity ites. Pair with Tube and Cube Telemtry System and HydroVu for automtatic barometric compensation.

Use high-accuracy, vented systems to conduct aquifer tests and to view barometrically compensated water level data in real time.

Forgot to set a level reference at the beginning of a deployment? Automate level corrections by using Win-Situ Software's post-level correction Wizard.

BaroTROLL® Data Logger

When using a nonvented system, collect barometric pressure and temperature data with a titanium BaroTROLL Data Logger in order to post correct data for barometric pressure fluctuations.

Calculating barometric efficiency? Use the BaroTROLL Logger with vented systems.

Carson Pump Equipment

Wire Brush

Wire Brush

400 gpm bag filter

Silt Fencing

21,000 Gallon tank and Trash Pump

Wire-line Bailer

Flow Meter

Sanitary Sewer Discharge Set-up

Pacific Surveys Equipment

TOOL NO. # 24 SPINNER/FLOWMETER

Titan Spinner/Flowmeter

SPECIFICATIONS AT A GLANCE

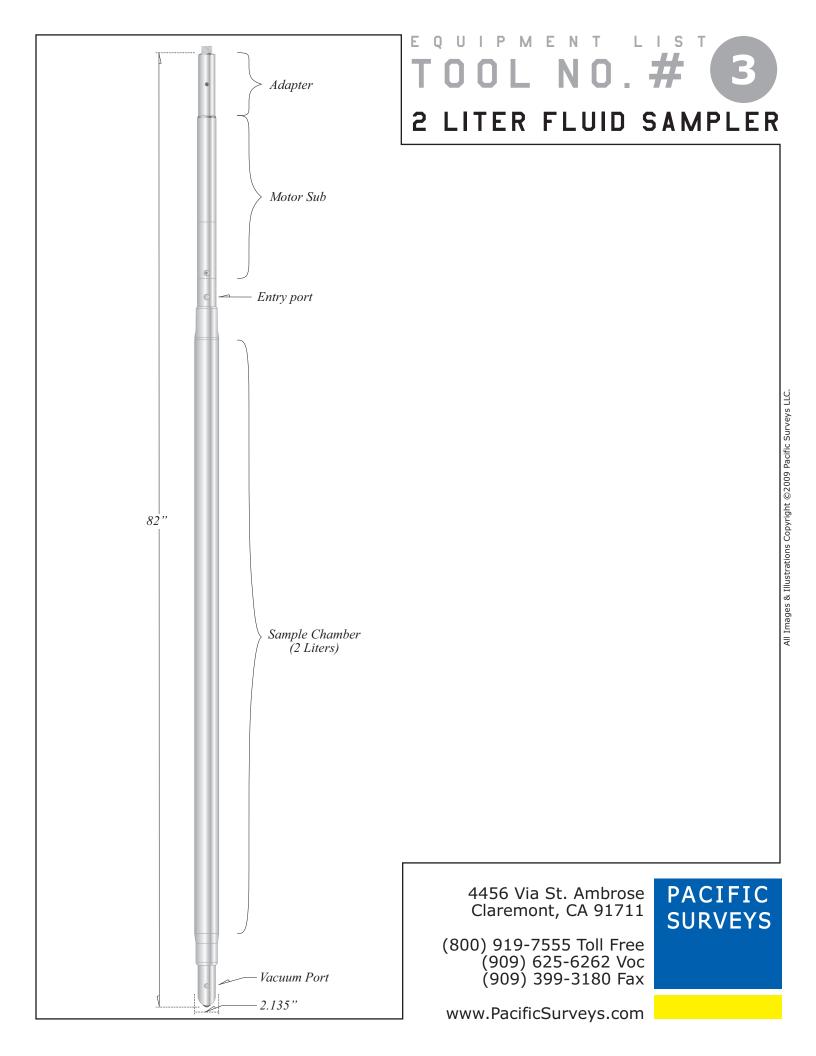
Diameter: 1.6875"

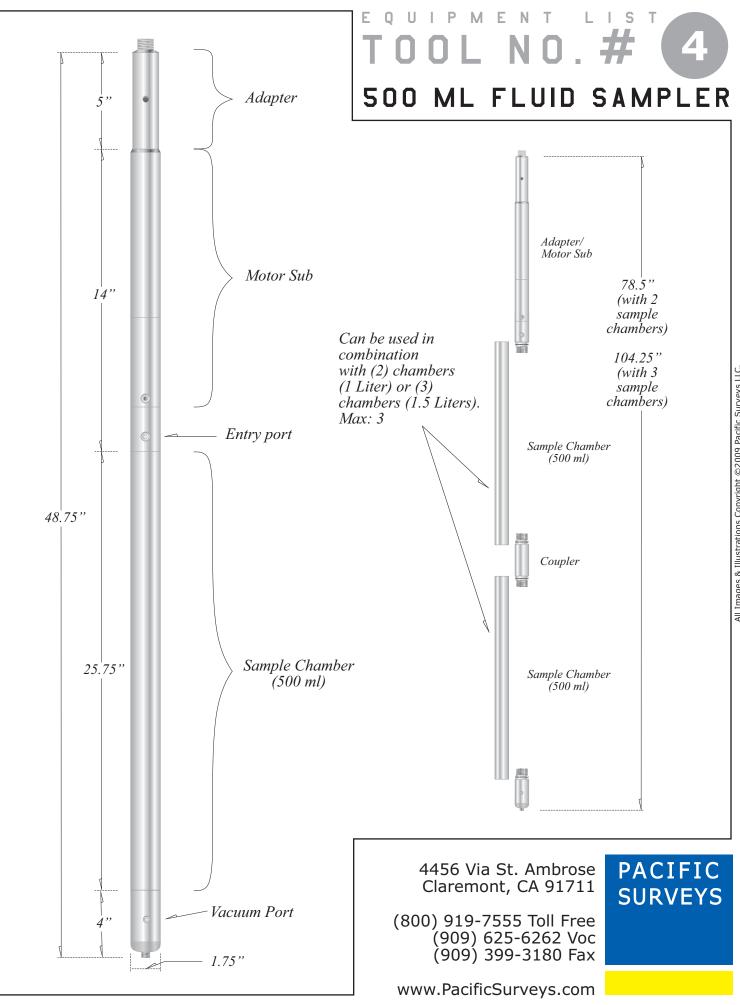
Length: 24"

Weight: 8 Lbs (3.6 Kg)

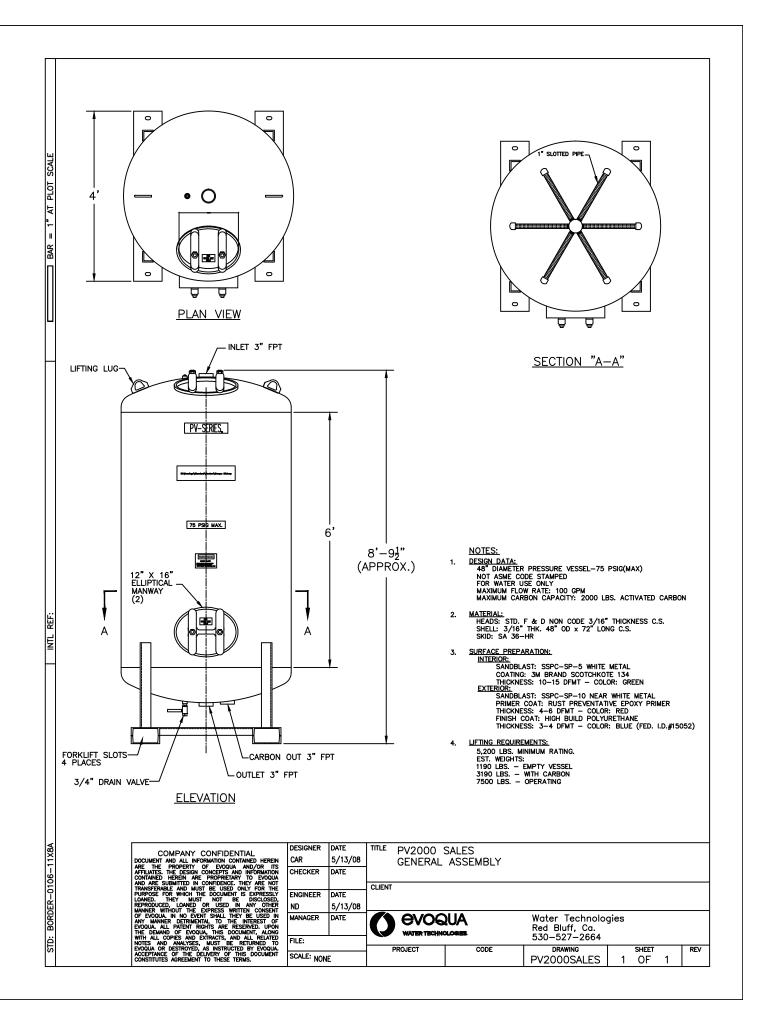
Temperature Rating: 350° F (176.7° C)

Make Up Length (as shown): 24" (60.96 Cm)


Pressure: 15,000 Psi (103 Mpa)

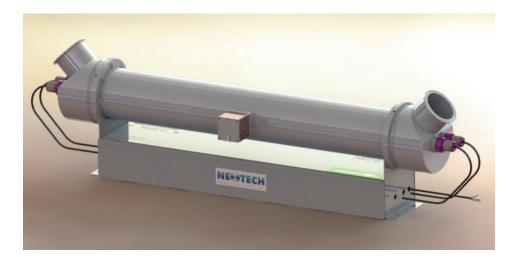

4456 Via St. Ambrose Claremont, CA 91711

(800) 919-7555 Toll Free (909) 625-6262 Voc (909) 399-3180 Fax


www.PacificSurveys.com

PACIFIC SURVEYS

Evoqua – GAC Treatment Equipment


NeoTech – UV / AOP Equipment

NeoTech D438[™]

Ultrapure Water Disinfection & Ozone Destruction

Pharmaceutical • Microelectronics • Medical • Remediation • Beverage
Commercial/Industrial • Pool/Spa • Waste Water • Drinking Water • AOP

PRODUCT BENEFITS

- Dual lamp efficiency processes up to 500 gallons per minute
- 75% smaller footprint compared to standard UV systems
- May be mounted vertically or horizontally
- Up to four units may be controlled with a single micro-control box
- Built for 120V or 230V single phase power providing maximum flexibility
- No flow, no problem guaranteed 60 minutes
- Water contact finish Ra-15
- Controller- Remote
- Alarms, Remote Control, 4-20 mA output
- Real time dosimetry, 100% dosage assurance with constant flow
- UV monitor is NIST traceable
- Sanitization in place hot water or steam
- No-tool lamp change
- NSF Standard 50 certified
- Warranty one year parts and labor

SPECIFICATIONS

Flow Rate - gpm (m ³ /hr.) - 99% UVT @ 40mJ/cm ² ^	500 (90.8)
Flow Rate - gpm (m ³ /hr.) - 99% UVT @ 30mJ/cm ²	500 (90.8)
Flow Rate - gpm (m ³ /hr.) - 95% UVT @ 40mJ/cm ²	329 (74.7)
Flow Rate - gpm (m ³ /hr.) - 95% UVT @ 30mJ/cm ²	500 (90.8)
Number of High Output Amalgam Lamps	2
Lamp Life - Hours*	9000
Operating Power - watts	303
Operating Pressure - psi (bar)	150 (13)
Operating Temperature - ºF (ºC)	36 - 104 (2 - 40)
Pressure Drop at rated flow - psi (bar)	10.9 (0.95)
Dry Weight - pounds (kg)	63 (28.6)
Dimensions (L x H x D) - inches	40.6 x 7.9 x 11.4
Dimensions (L x H x D) - millimeters	1030 x 201 x 290
Sanitary Fittings - Standard ⁺	3 in.

^ At rated pressure drop.

* Lamp life is based on a maximum of one on-off cycle per day and room temperature water.

⁺ All units come standard with sanitary tri-clamp fittings for improved reliability, sanitation, and ease of installation. Alternative connections are available upon request.

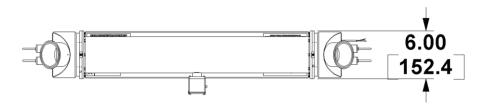
The NeoTech D438[™] is specially designed to disinfect water and is an essential component in advanced oxidation processes.

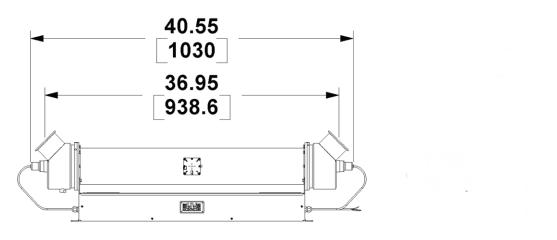
This high-efficiency UV system utilizes NeoTech Aqua's patented ReFleX[™] chamber technology, reflecting over 99% of the 254nm UV generated. It is the highest efficiency, smallest footprint, and lowest operating cost UV system in the water treatment industry.

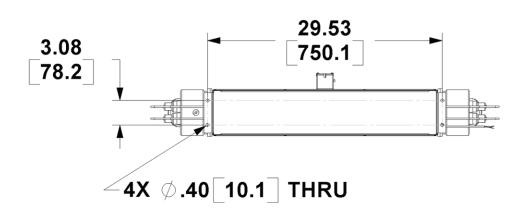
With only two thirty-eight inch lamps, the D438[™] provides users the most convenient and lowest cost service schedule of any low pressure or medium pressure UV system today.

MAXIMUM UV PENETRATION

The NeoTech D438™ provides users an unparalleled level of engineering sophistication by maximizing UV distribution in a patented 99% reflective chamber. This unique technical advantage also reduces the number of lamps and power requirements by up to 90% compared to standard UV systems.


MINIMAL MAINTENANCE AND SERVICE


The service and maintenance requirements for the NeoTech D438[™] are limited to three basic requirements:

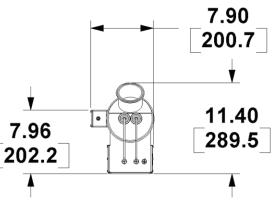

- Lamp Replacement: No Tools Required
- UV Monitor: May be changed with a single screwdriver while the system is operating
- Cleaning: May be cleaned as needed in a CIP loop or manually brushed.

UNPARALLELED EFFICIENCY

The NeoTech D438™ boasts the smallest footprint in its class. With as few as onetenth as many bulbs compared to standard UV systems, it has the lowest operating cost and maintenance schedule in the field.

OPTIONS AND SPARES

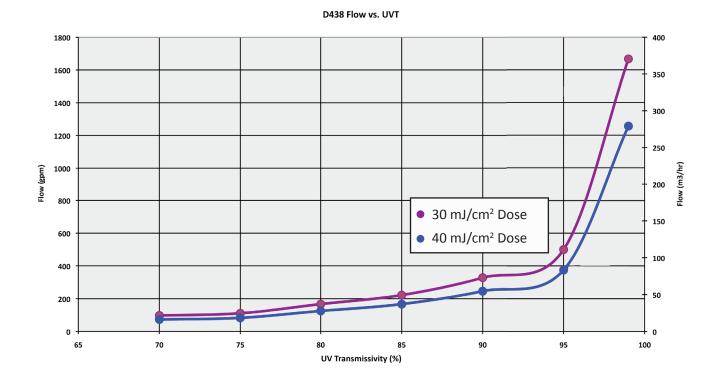
Description	Part Number	
Light Trap Kit*	UVLTK-4	
Cleaning Kit	СК-4-1	
Amalgam Lamp Kit	LK-38	
Lamp Sleeve Kit	QSK-38	
UV Monitor Calibration	UVIM-CAL	
Ballast Kit, 120V	BK-120	
Ballast Kit, 230V	BK-230	

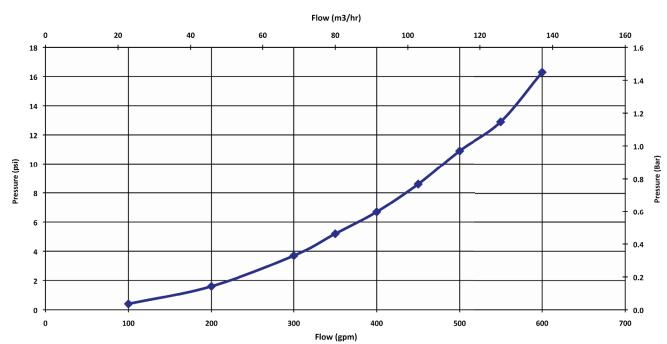

7 _2

* Reflected UV light may be harmful to nonmetallic surfaces, such as PPL, PVC, and other plastics. Therefore, it is recommended that a light trap be installed on your unit.

5893 Oberlin Drive, Suite 104, San Diego, California 92121 Toll-Free 888.718.5040, ph: 858.571.6590, fx: 858.571.6596, Web: neotechaqua.com, info@neotechaqua.com

TOPPhene


NeoTech D438[™]



TOWNside Strences

Ultrapure Water Disinfection & Ozone Destruction

Pharmaceutical • Microelectronics • Medical • Remediation • Beverage
Commercial/Industrial • Pool/Spa • Waste Water • Drinking Water • AOP

The UV transmissivity (UVT) of the treated water, combined with the flow rate through the unit, determine the UV dosage applied to the water. Particles in water typically absorb or reflect UV light which affects the water's UV transmissivity. NeoTech Aqua's units are rated based on a UVT of 95%. The above graph illustrates the appropriate rating for the D438 based on varying UVT levels. The NeoTech Aqua Solutions technical team provides complimentary UVT analysis on customer-supplied water samples to ensure proper UV equipment sizing. Please contact your NeoTech Aqua representative for assistance.

D438 Head Loss

APPENDIX B. TECHNICAL SPECIFICATIONS

TECHNICAL SPECIFICATIONS

Table of Contents

Section	Title	Pages
1000	Summary of Work	1-4
015000	Temporary Facilities	1-4
330120-200	Video Camera Survey	1-2
330120-202	Dynamic Flow Survey	1-2
330120-342	Mechanical Well Cleaning	1-2
330120-460	Well and Aquifer Testing	1-4
330120-20000	Site Cleanup	1-2
	Figure B-1 Aquifer Test and Treatment Setup	
	Figure B-2 LBWC Well #4 (Post-Video	
	Survey)	
	Appendix A – Sanitary Sewer Discharge	
	Permit	

SECTION 1000

SUMMARY OF WORK

PART 1. GENERAL

1.01 WORK UNDER THIS CONTRACT

- A. The **CONTRACTOR** shall furnish all labor, materials, equipment and means to for the project entitled South Y Extraction Well Suitability Investigation, described herein. The work is to evaluate the condition of the Lukins Brothers Water Company (LBWC) Well #4 and will include performing a video survey, mechanically cleaning the well, aquifer testing and performing a pilot test to determine suitability of using LBWC Well #4 as a tetrachloroethylene (PCE) extraction well. The work includes, but is not limited to, the following:
 - 1. Disinfect all downhole equipment prior being brought onto site
 - 2. Remove access port on the roof to allow equipment to access the well.
 - 3. Provide one 21,000 gallon temporary storage tank.
 - 4. Provide 15-micron in-line bag filter to filter all water being produced from the well, prior to any treatment.
 - 5. Provide all necessary discharge piping and temporary pump to transfer water from the temporary storage tank and through the GAC and UV treatment system to the sanitary sewer.
 - 6. Video survey the well prior to performing work.
 - 7. Mechanically clean the louvered well casing using a steel brush.
 - 8. Furnish and Install 1-inch diameter temporary PVC sounding tube from ground surface to 10-feet above the pump in LBWC Well #4.
 - 9. Furnish and Install temporary submersible pump and discharge piping to pump the water into the temporary storage tank. Furnish and install necessary equipment to connect the pump to onsite power.
 - 10. Comply with South Tahoe Public Utility District (District) sanitary sewer discharge requirements

- 11. Disinfect the well
- 12. Disposal of wastes
- 13. Site clean-up

The above general outline of principal features does not in any way limit the responsibility of the **CONTRACTOR** to perform all work and furnish the required materials, equipment, labor and means as shown or required by the Contract Documents, Materials, equipment, labor, etc., obviously a part of the work and necessary for the proper operation and installation of same, although not specifically indicated in the Contract Documents, shall be provided as if called for in detail without additional cost to the **ENGINEER**.

All materials or additives place in the well shall be NSF certified.

1.02 WELL LOCATION AND BACKGROUND INFORMATION

All work is to be performed on property owned by Lukins Brothers Water Company. The location of the well is presented in the attached Figure 1 of this specification.

1.03 WORK BY OTHERS

- A. Work described below will be provided by the **ENGINEER'S CONSULTANT.** The work shall include the following general items:
 - 1. Coordinate, observe and document the **CONTRACTOR'S** activities.
 - 2. Review **CONTRACTOR'S** recommendations whether to rehabilitate the existing pumping plant or to purchase new equipment.
 - 3. Coordinate sanitary sewer permits for discharge of fluids.
 - 4. Observe and document the video survey.
 - 5. Arrange for laboratory analysis of water quality samples.
 - 6. Observe and document the well and production testing by specifying the step-test and constant rate flow rates, measuring water levels, install transducers, and collecting samples.
 - 7. Interpret the test results.
 - 8. Document the work activities.

1.04 ENGINEER-FURNISHED PRODUCTS

A. ENGINEERS'S responsibilities:

- 1. Provide assistance to **CONTRACTOR** to obtain permits.
- 2. Arrange to have samples delivered to STPUD for laboratory analysis.
- 3. Provide water at no cost to the **CONTRACTOR**.

B. CONTRACTOR'S responsibilities:

- 1. Review **ENGINEER** reviewed shop drawing's product data, and samples.
- 2. Comply with the Regional Quality Control Board (RWCQB) issued NPDES discharge permit effluent limitations and conditions (provided in Appendix A), STPUD for wastewater discharge permits, or other methods of water disposal identified by the **ENGINEER**.
- 3. Handle, store, install and finish products.
- 4. Provide clean and disinfected equipment that will be used downhole during the well rehabilitation work. The CONTRACTOR shall clean all equipment by using a high-pressure washer with water with a 500 ppm solution of chlorine bleach (one-gallon of 5.25% bleach in 100 gallons of water). After the cleaning the equipment shall be allowed to thoroughly air-dry. The cleaning shall be performed prior to the equipment arriving on site at a facility verified and accepted by the **ENGINEER**.
- 5. Provide gasoline or diesel equipment meets or exceeds the Monterey Bay Unified Air Pollution Control Districts requirements. Permits shall be obtained by the **CONTRACTOR**, if required, for the use of portable equipment at the project sites.

1.05 CONTRACTOR USE OF SITE (AND PREMISES)

- A. The **ENGINEER** must have personnel on-site during all phases of the work to be performed unless otherwise stated by the **ENGINEER**.
- B. All work will be performed Monday through Friday between 8:00 A.M. and 5:00 P.M. No work shall be performed on the well sites while children are present at adjacent properties, i.e. schools or parks. If necessary, exceptions may be granted by the **ENGINEER** for work on Saturday. No work shall be allowed on Sundays and holidays except as specified herein, or as approved by the **ENGINEER** or in case of an emergency.

1.06 FUTURE WORK

A. None.

1.07 WORK SEQUENCE

A. As awarded by **ENGINEER.**

1.08 CHANGE PROCEDURES

A. The Engineer may issue to **CONTRACTOR** a Proposal Request which includes a detailed description of a proposed change with supplementary or revised drawings and specifications, a change in Contract Times for executing the change and the period of time during which the requested price will be considered valid. **CONTRACTOR** will prepare and submit an estimate within 15 working days. The estimate shall contain a detailed breakdown of the labor, equipment, material, subcontract, equipment rental, contingencies, overhead, and profit costs associated with the requested change. The estimate shall also include any requested adjustments to Contract Times including the window of time the **ENGINEER** has to render a decision on the matter.

1.09 DEFINED TERMS

A. Terms used in these Specifications, which are defined in the General Conditions of the Contract Documents shall have the meanings assigned to them in the General Conditions.

1.10 ABBREVIATIONS

Where any of the following abbreviations are used in the Contract Documents, they shall have the meaning set forth opposite each.

ANSI	American National Standards Institute
ASCE	American Society of Civil Engineers
ASTM	American Society for Testing and Materials
AWWA	American Water Works Association
NEMA	National Electrical Manufacturers Association
NPDES	National Pollutant Discharge Elimination System
NPT	National Pipe Thread
UL	Underwriters' Laboratories

PART 2. MATERIALS (NOT USED)

END OF SECTION

SECTION 015000

TEMPORARY FACILITIES

PART 1 GENERAL

1.01 SUMMARY

A. Section includes:

1. Temporary facilities, utilities including but not limited to water, electrical power, drainage, sanitary facilities, air quality, lighting, and security.

B. MEASUREMENT AND PAYMENT

- 1. No price is fixed for TEMPORARY FACILITIES in the proposal and the cost shall be distributed amongst the bid items, except as noted below. The **CONTRACTOR** is to do the work or furnish materials and equipment to complete all the work as may be needed to provide temporary facilities.
- 2. The cost of providing temporary storage tanks shall be on a Lump Sum price as itemized on the Bid Schedules and no additional compensation shall be paid.

1.02 WATER

- A. The **CONTRACTOR** shall be provided water by the **DISTRICT**.
- B. Should the contractor obtain water from a municipal fire hydrant, the **CONTRACTOR** shall provide an approved backflow prevention device for use in connecting to the hydrant. **CONTRACTOR** shall contact the water agency for questions concerning approved devices.
- C. Water used for well rehabilitation shall be kept free from contamination and shall conform to the requirements of the state and local authorities for potable water.

1.03 ELECTRICAL POWER

- A. The **CONTRACTOR** may use the onsite power, with permission of the **ENGINEER**. The **CONTRACTOR** shall provide a suitable motor control panel to use onsite power.
- B. All other electric power required for construction, general lighting, security lighting, and all other purposes supplied through temporary facilities shall be provided by the **CONTRACTOR**. The **CONTRACTOR** may arrange with the local utility to provide adequate temporary electrical service at a mutually agreeable location or provide his own generating equipment provided it meets the 'ultra quiet' requirement and noise ordinances described below.

C. When power cords are used at the site, the **CONTRACTOR** shall provide adequate job site electrical distribution facilities conforming to applicable codes and safety regulations.

1.04 DRAINAGE

A. **CONTRACTOR** shall prevent any fluids other than rainwater from entering the offsite drainage facilities.

1.05 SANITARY FACILITIES

A. The **CONTRACTOR** shall provide and maintain suitable chemical toilets or water closets (cleaned a minimum of twice a week) at the site or locations reviewed by the **ENGINEER'S CONSULTANT**. Upon completion of the contract work, the **CONTRACTOR** shall remove such toilets and disinfect the premises in the event of a spill or leakage.

1.06 LIGHTING

A. The **CONTRACTOR** shall provide temporary lighting in all work areas sufficient to maintain a lighting level during working hours not less than the lighting level required by California OSHA standards. When used, lighting shall be shielded so that adjacent property owners are not adversely impacted.

1.07 NUISANCE WATER

A. It is anticipated that nuisance water, such as drilling water, rainfall, groundwater or surface runoff may be encountered within the construction site during the period of construction under this contract. The **CONTRACTOR** shall at all times protect the work from damage by such waters and shall take all due measures to prevent delays in progress of work caused by such waters. The **CONTRACTOR** shall dispose of nuisance water at his own expense and without adverse effects upon the **ENGINEER'S** property or any other property.

1.08 WATER DISPOSAL

- A. The **CONTRACTOR** shall comply with the **DISTRICTS** sanitary sewer discharge permit (see Appendix A). The discharge shall meet California Department of Public Health Maximum Contaminant Levels (MCLs) for drinking water and have no objectionable visual or odors.
- B. The effluent produced by well rehabilitation, development and testing the well will not be discharged to land or into streets, gutters or into any of the facilities such as the storm drains.
- C. The **CONTRACTOR** will provide the conveyance mechanism and all safety measures for the transportation of water to the sanitary sewer manhole.

1.09 NOISE ABATEMENT

- A. The work shall be carried out as quietly as possible to prevent possible annoyance to adjacent businesses and residents. Unnecessary noise shall be avoided at all times. The **CONTRACTOR** shall comply with the requirements of any and all local ordinances and the instructions of the **ENGINEER'S CONSULTANT**.
- B. No person shall operate any machine, mechanism, device, or contrivance which produces a noise level exceeding eighty-five (85) dbA ("dbA" means decibels on the A scale) measured fifty (50) feet there from. The prohibition in this Section shall not apply to any such machine, mechanism, device or contrivance which is operated in excess of two thousand five hundred (2,500) feet from any occupied dwelling unit.
- C. In general, the **CONTRACTOR** shall maintain a dbA level less than 50 decibels at the property line when the project is in residential areas, in cities, or incorporated areas. Special conditions may allow for higher levels.

1.10 AIR QUALITY

- A. The **CONTRACTOR** shall comply with all applicable air quality requirements in the air quality district with jurisdiction over the construction zone as not to exceed any threshold established for any pollutant in that particular district. The project area is covered by the El Dorado County Air Pollution Control District (EDCAPCD).
- B. To minimize the generation of ozone pollutants throughout the project area to the fullest extent possible, the **CONTRACTOR** shall employ the following mitigation measures: Where feasible, the **CONTRACTOR** shall utilize electricity from available power sources in place of combustion engines; **CONTRACTOR** is required to reduce idling time of vehicles wherever possible; **CONTRACTOR** will ensure all vehicles used in construction are tuned and in good working order at all times and shall undergo scheduled regular good working order at all times and shall undergo schedule regular maintenance; vehicles displaying signs of improper emissions or improper working order will be removed from use until repaired; **CONTRACTOR** shall use the minimum number of vehicles possible to complete the job and will encourage their crews to carpool to and from the construction site whenever and wherever possible; use of California smog equipped transportation equipment is encouraged; use of newer, more technologically advanced equipment is encouraged wherever possible and will aid the **CONTRACTOR** in reducing emission for all pollutants; CONTRACTOR shall perform the construction on schedule that will reduce vehicle miles traveled to the fullest extent practicable.

1.11 FENCES

- A. Fences, Barricades, Warning Signs, and Lights.
 - 1. When used, shall conform to CAL-OSHA regulations, other State of California and local codes, rules, regulations, and ordinances for protection of workers, public and private property, and provide, install and maintain barricades, warning devices and other protection required therefore.
 - 2. **CONTRACTOR** shall provide temporary fencing, etc., as required to protect materials, equipment, and miscellaneous items from theft, vandalism, unauthorized access and/or harm.
 - 3. The **CONTRACTOR** shall provide secured fencing with a visual barrier when using temporary storage tanks which are not contained entirely with the fenced enclosure of LBWC property.

PART 2 PRODUCTS

(Not used.)

PART 3 EXECUTION

(Not used.)

END OF SECTION

SECTION 330120-200

VIDEO CAMERA SURVEYS

PART 1. GENERAL

1.01 DESCRIPTION

A. This work includes all materials, labor, tools, and equipment required for color video camera survey over the entire depth of the well. A video survey is to be completed prior to the mechanical cleaning of the well.

1.02 SUBMITTALS

- A. The **CONTRACTOR** shall perform the video survey or use Pacific Surveys as a **SUBCONTRACTOR**. A DVD shall be provided to the **ENGINEER'S CONSULTANT** immediately after the survey is complete.
- B. The **CONTRACTOR** shall provide the **ENGINEER'S CONSULTANT** with three (3) DVDs of the camera survey upon completion of the survey.

1.03 MEASUREMENT AND PAYMENT

A. Payment for the video camera surveys shall be per Lump Sum price as itemized in the Bid Schedules.

PART 2. MATERIALS

2.01 VIDEO CAMERA

- A. The camera used for the survey shall be equipped with centralizers.
- B. The equipment used by the firm for the video survey shall produce a video with an automatic depth indication.
- C. The camera shall provide both vertical and side scanning capabilities.

2.02 DVD

A. The **CONTRACTOR** shall use new DVD's to document the camera survey.

PART 3. EXECUTION

3.01 SURVEY

A. The surveys shall be run in the presence of the ENGINEER'S CONSULTANT.

- B. The **CONTRACTOR** shall spray exposed surfaces of the camera with a solution having a chlorine residual of not less than 200 mg/L prior to performing the survey.
- C. The **CONTRACTOR** shall be required to provide whatever assistance may be required to accomplish the camera survey, including removing and reattaching the steel cover plate on the well casing.
- D. The **CONTRACTOR** shall convey at least three (3) well volumes of fresh water into the well before conducting the video survey.
- E. Clarity must be sufficient to evaluate the condition of all joints, screen openings, and interior surface of all casings and screen.
- F. Should the video survey fail to produce a clear picture of the internal casing conditions as determined by the ENGINEER'S CONSULTANT, the CONTRACTOR shall make arrangements to clear the water and resurvey the well at no additional expense to the ENGINEER.
- G. A vertical scan of the well shall be completed first to the total depth of the well. A focusing side-scan of the well shall be made as the camera is returned to ground surface to inspect all points of interest, including but not limited to well screens, casing joints, sounding port, and damaged areas/spots.
- H. The maximum speed of the vertical survey shall be 30 feet per minute. The side scan shall be at a rate of no more than one revolution per foot at a rate of 10 feet per minute. If the survey speed exceeds this rate, the **CONTRACTOR** shall re-run the video survey at no additional cost to the **ENGINEER**.
- I. The video survey DVDs shall become the property of the **ENGINEER'S CONSULTANT** at the time the survey is completed.

END OF SECTION

SECTION 330120-202

DYNAMIC FLOW SURVEY

PART 1. GENERAL

1.01 DESCRIPTION

A. This section describes the Dynamic flow survey to be conducted by the geophysical logging firm Pacific Surveys, and to be retained by the **ENGINEERS CONSULTANT.** The survey shall be run during the aquifer testing.

1.02 RELATED SECTIONS

A. None.

1.03 SUBMITTALS

- A. Five copies of the survey results will be provided at the completion of logging.
- B. Within 7 days of the completion of the survey, the **CONTRACTOR** shall provide to **ENGINEER'S CONSULTANT** all survey logs and interpretation (10 paper copies) and in "pdf" format (on a compact disc or thumb-drive).

1.04 MEASUREMENT AND PAYMENT

A. Payment for the Dynamic flow survey shall be Lump Sum price as itemized on the Bid Schedule.

PART 2. MATERIALS

2.01 TESTING EQUIPMENT

A. The Dynamic flow survey tool shall consist of a device that can visually quantify volumetric flow rates into the well within 2 feet of the entry point. The tool shall be capable of detecting flow from 0.2 to 100 feet per minute (1.5 to 800 gpm).

PART 3. EXECUTION

3.01 LOGGING

- A. The logs will be run in the presence of the ENGINEER'S CONSULTANT. The visual flow survey logs shall become the property of the ENGINEER'S CONSULTANT when the logging is completed.
- B. The survey shall be performed in two steps. Initially the survey shall be conducted with measurement being taken on at least 20-foot intervals to assess the overall flow

conditions within the well. The next step shall then be performed at smaller intervals to define entry areas.

C. The **CONTRACTOR** shall be required to provide whatever assistance may be necessary to accomplish the logging.

END OF SECTION

SECTION 330120-342

MECHANICAL WELL CLEANING

PART 1. GENERAL

1.01 DESCRIPTION

A. This section describes the well cleaning activities to be conducted after the pump and appurtenances have been removed from the well and a video log made of the initial conditions. The **CONTRACTOR** shall notify the **ENGINEER'S CONSULTANT** before work commences.

1.02 RELATED SECTIONS

A. Section 330120-200 Video Camera Surveys

1.03 SUBMITTALS

A. The **CONTRACTOR** shall provide to the **ENGINEER** a daily report describing the work accomplished, hours used, and personnel on-site.

1.04 MEASUREMENT AND PAYMENT

A. Payment for the mechanical well cleaning shall be at an hourly rate price as itemized in the Bid Schedules.

PART 2. MATERIALS

2.01 CLEANING EQUIPMENT

- A. The **CONTRACTOR** shall furnish a wire brush all of whose bristles touch the edges of the casing.
- B. The brush shall be attached to a wire-line, pipe or drill rods as long as the brush can freely rotate during raising and lowering the brush during the cleaning process.
- **C.** The **CONTRACTOR** shall clean all tools and equipment, prior to arriving on site, that will be used downhole with a solution of 500 ppm chlorine bleach and water (one-gallon of 5.25% bleach in 100 gallons of water). After the cleaning the equipment shall be allowed to thoroughly air-dry.
- D. The CONTRACTOR shall only use thread lubrication compound purchased and dedicated to the well.

PART 3. EXECUTION

3.01 WELL CLEANING

- A. The total depth of the well shall be measured before beginning work.
- B. The **CONTRACTOR** shall use a wire brush to clean and remove scale attached to the well casing.
- C. The **CONTRACTOR** shall use a wire brush to clean and remove scale attached to mills knife or louvered perforations or nylon brushes for wire wrapped well screens.
- D. The well screens shall be brushed for about 2 minutes per foot of screen section. The well casing shall be brushed for about 1 minute per foot of casing below the water surface.
- E. The **CONTRACTOR** shall remove the brush upon completion of the mechanical cleaning and bail sediments and debris from the bottom of the well. The sediment shall be bailed to a depth of 135 feet bgs upon completion of the work.

END OF SECTION

SECTION 330120-460

WELL AND AQUIFER TESTING

PART 1. GENERAL

1.01 DESCRIPTION

A. This section includes the products, materials, and procedures associated with the well and aquifer testing. Also included but not limited to, step-drawdown test with increasing discharge rate, long-term continuous constant-rate pumping test, and sand production test. It is the **ENGINEER'S** general objective to have a well that is sand-free and hydraulically efficient.

1.02 RELATED WORK SPECIFIED ELSEWHERE

A. Section 330120-200 Video Camera Surveys

1.03 SUBMITTAL

A. None.

1.04 MEASUREMENT AND PAYMENT

- A. The measurement for work associated with well and aquifer testing is per Hour.
- B. Payment for well and aquifer testing will be made in accordance with the unit prices itemized in the Bid Schedules. Payment shall include full compensation for furnishing and operating equipment.

1.05 SAND CONTENT PERFORMANCE CRITERIA

- A. Sand testing and content criteria are given below:
 - 1. Sand production shall average less than or equal to 5 parts per million (ppm) when measured over any 5-minute interval within the first 15 minutes from the commencement of pumping at the design capacity of the well.
 - 2. The design capacity of the wells will be determined during well development.
 - 3. Sand production shall be measured using a Rossum Centrifugal Sand Sampler as specified in Section E.2.3 of the AWWA A100-97 Standard for Water Well and in the article "Control of Sand in Water Systems, Journal of American Water Works Association, Volume 46, No. 2, February, 1954.
- B. Failure of Pump Operation

1. In the case of failure of the pump operation for a period greater than one (1) percent of the elapsed pumping time from t=0, the test shall be suspended until the static water level has been attained. Should the test be aborted as a result of a deficiency on the part of the **CONTRACTOR**'s equipment or personnel, all time consumed in waiting for complete water level recovery and in resuming the pump test to the point where it was aborted shall be at no cost to the **ENGINEER**.

PART 2. EQUIPMENT

2.01 GENERAL

- A. Water Level Probe and Sounding Tube
 - 1. The **CONTRACTOR** shall furnish an electrical depth gauge capable of indicating changes in the well water level to the nearest 0.01 foot.
 - 2. A 1-inch diameter temporary PVC sounding tube shall be installed from ground surface to 10-feet above the pump. This shall be used for the water level sounder and/or pressure transducer during testing.
- B. In-Line 15-micron Bag Filter
 - 1. Contractor shall furnish and install a temporary 15-micron bag filter sized properly to accept up to 165 gpm flow and allow flow to be filtered for entire 24-hour constant-rate test. See Figure B-1 for location of filter related to other site appurtenances. The filter shall be in-line, after the pump and prior to any treatment systems.

PART 3. EXECUTION

3.01 PROCEDURES

- A. The **CONTRACTOR** shall provide whatever assistance may be required by the **ENGINEER'S CONSULTANT** to conduct the tests
- B. The **CONTRACTOR** shall schedule all tests sufficiently in advance so that the **ENGINEER'S CONSULTANT** can be on site during each testing period.
- C. Step Draw-down Test
 - 1. The well shall be "step" tested for 1 hour each at rates of approximately 1/2, 3/4, 1 and 1 ¼ times the historic design capacity of the well, unless otherwise specified by the **ENGINEER'S CONSULTANT**. The furnished and installed pump shall be able to pump from 65 to 165 gallons per minute.
 - 2. The complete test for the well is estimated to require approximately 4 hours.

- 3. The **CONTRACTOR** shall operate the pump and change the discharge as specified by the **ENGINEER'S CONSULTANT**.
- 4. Discharge rate from the pump shall be controlled by a gate valve and/or variable frequency drive. The discharge shall be controlled and maintained at the desired discharge for each step with an accuracy of at least plus or minus five (5) percent.
- 5. The rate of sand production will be measured by the **CONTRACTOR** using the Rossum centrifugal sand sampler. Rate of sand production will be determined at five-minute intervals within the first 20 minutes of each step and at the conclusion of each step.
- 6. During the test, the **ENGINEER'S CONSULTANT** and/or the **CONTRACTOR** will record the time, pumping level, discharge rate, and rate of sand production.
- D. Long-Term Pumping Test
 - 1. The rate of pumping shall be specified by the **ENGINEER'S CONSULTANT**.
 - 2. The Contractor shall ensure that the pumping rate selected remains constant throughout the test.
 - 3. The test duration shall be approximately 24-hours.
 - 4. When the test is completed and the pump stopped, the **ENGINEER'S CONSULTANT** will measure recovery of the water level in the well until it has recovered to within 10 percent of the static water level.
 - 5. During the drawdown and recovery tests, the **ENGINEER'S CONSULTANT** and/or the **CONTRACTOR** will record the time and measure the water level in the pumped well on the following schedule:

Pump Test Schedule						
First 10 minutes	once every minute					
10 to 20 minutes	once every 2 minutes					
20 to 60 minutes	once every 10 minutes					
60- to 240 minutes	once every 30 minutes					
240 to 720 minutes	once every 60 minutes					
720 to 1,400 minutes	once every 120 minutes					

- E. The **ENGINEER'S CONSULTANT** and/or the **CONTRACTOR** will also record the discharge rate each time the pumping water level is measured.
- F. The **ENGINEER'S CONSULTANT** may collect water samples near the end of the drawdown test for analyses.

- G. The **CONTRACTOR** shall not remove the pump for a period of 24-hours after completion of the constant rate test to allow for recovery water level measurements. No standby time will be paid during this time.
- H. The **CONTRACTOR** shall provide qualified personnel continuously during both the step-drawdown and long-term pumping test to ensure proper operation of the pumping test equipment and to measure water levels. The **ENGINEER'S CONSULTANT** will be present during start-up of each test to assist in measuring water levels.
 - 1. No payment will be made to the **CONTRACTOR** for an aborted pumping test interrupted by the malfunctioning or failure of pumping equipment. If a test is interrupted, the water levels will be allowed to fully recover, after which the test will be restarted.
 - 2. When the production tests are complete, the **CONTRACTOR** shall remove the pump and clean the well of all accumulated sediment and foreign material. The **CONTRACTOR** shall demonstrate that the well has been properly cleaned by measuring the depth of the well in the **ENGINEER'S CONSULTANT**'s presence prior to final well disinfection.

END OF SECTION

SECTION 330120-20000

SITE CLEANUP

PART 1 GENERAL

1.01 SUMMARY

- A. Section includes:
 - 1. This work includes all materials, labor, tools, and equipment to properly perform site cleanup.

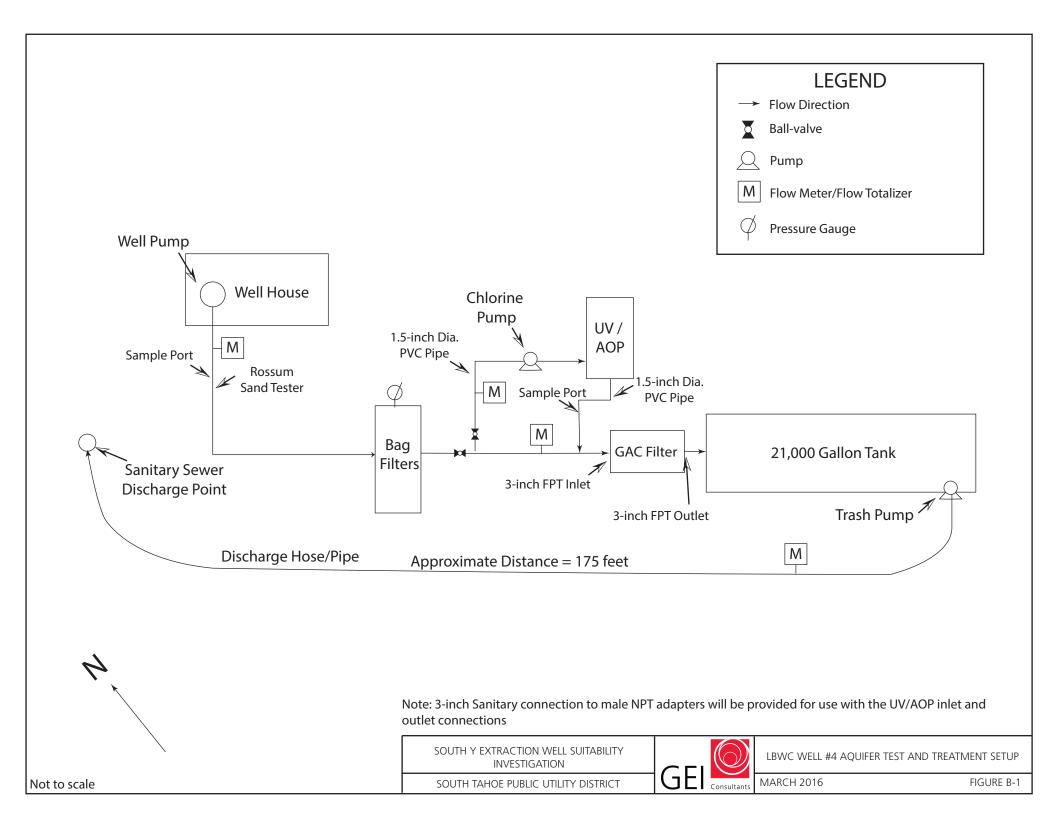
B. RELATED SECTIONS

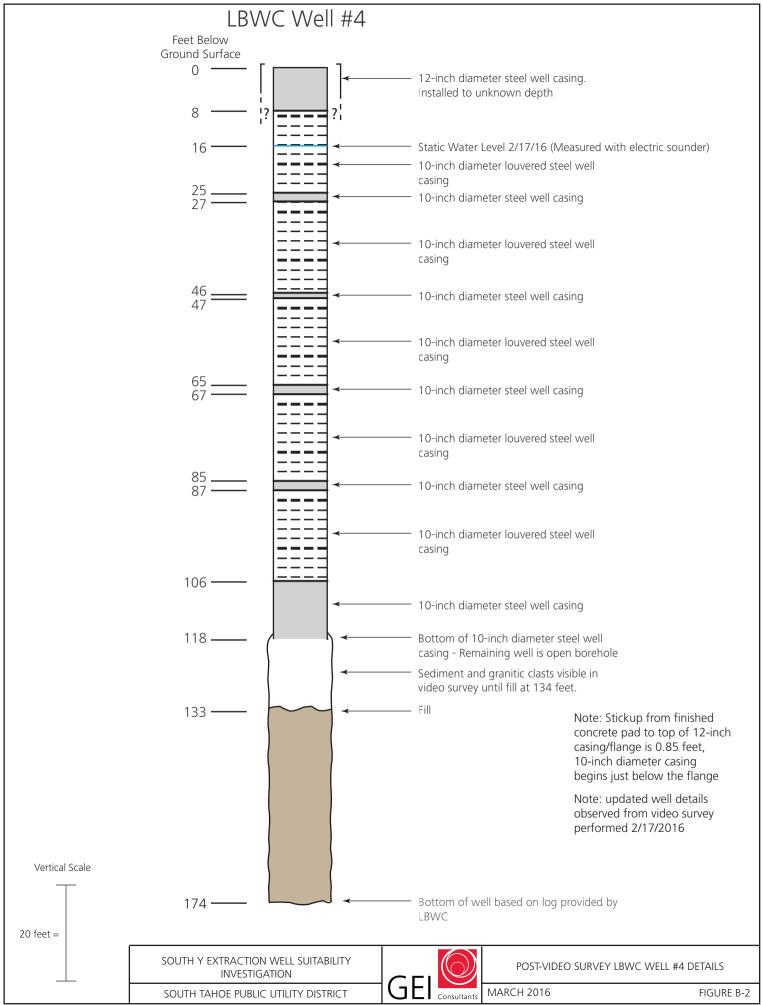
- 1. All.
- C. MEASUREMENT AND PAYMENT
 - 1. MEASUREMENT—no measurement shall be made for Site Cleanup.
 - 2. PAYMENT—no separate payment for Site Cleanup will be made in this contract.
 - 3. There will be no additional payment for rig time or idle time while site cleanup is being conducted.

PART 2 PRODUCTS

(Not Used)

PART 3 EXECUTION


3.01 CLEANUP


- A. The **CONTRACTOR** shall keep the premises free from accumulations of waste materials, rubbish, and other debris resulting from the work, and at completion of the work, he shall remove all waste materials, rubbish, and debris from and about the well site as well as all tools, construction equipment, fuel tanks, machinery, and surplus materials.
 - 1. The **CONTRACTOR** shall properly dispose of debris removed from the bottom of the well and miscellaneous debris.
 - 2. The **CONTRACTOR** shall leave the site clean and ready for use by the **ENGINEER**.
 - 3. The **CONTRACTOR** shall restore to their original condition all temporary work areas.

- 4. Any oil-stained or contaminated soils created by the **CONTRACTOR** shall be removed and properly disposed of by the **CONTRACTOR**.
- **5.** The **CONTRACTOR** is responsible for any damages to properties adjacent to the well caused by well testing activities associated with the work described in the contract documents.

END OF SECTION

FIGURES

TECHNICAL SPECIFICATIONS - APPENDIX A

SPECIAL DISCHARGE PERMIT Revised October 16, 2014

This Special Discharge Permit (Permit) is issued by the South Tahoe Public Utility District, a California Public Agency formed in 1950 pursuant to the Public Utility District Act (District), to ______ (Permittee) and (Consultant) issued at South Lake Tahoe, California, with reference to the following facts and intentions:

A. District owns and operates a wastewater collection system and treatment plant (collectively Wastewater System) and delivers treated wastewater for storage and use by customers in Alpine County;

B. Permittee is the owner of, and/or the responsible party for, the real property located at (Property);

C. Permittee desires to discharge industrially treated wastewater, wastewater of an unusual strength or character, and/or extraordinary amounts of wastewater (collectively Discharge Water) into the Wastewater System;

D. Permittee has retained the services of Consultant to operate the treatment and discharge of the Discharge Water into the Wastewater System. Consultant represents to District that it is fully qualified, capable and available to operate the Discharge Water treatment system in accordance with the requirements of this Permit; and

E. District agrees to allow Permittee to discharge the Discharge Water into the Wastewater System, pursuant to the terms and conditions of this Permit.

NOW, THEREFORE, the parties agree as follows:

1. <u>Wastewater Discharge Requirements</u> The Discharge Water shall not compromise or damage any process, component or operation of the Wastewater System including, but not limited to the biological treatment. The Discharge Water composition must be capable of being treated by District's standard treatment process so that the treated Discharge Water complies with District's current requirements and any standards, laws, regulations or ordinances of local, state, or federal governmental agencies. The type and maximum concentration of contaminates, chemicals, or other materials contained in the Discharge Water shall be determined by District, in its sole discretion, which may be modified at anytime, and include, but not limited to, the following:

- a. pH between 5.5 and 9.0
- b. Benzene < 1 ppb
- c. Ethylbenzene <680 ppb
- d. Toluene <100 ppb
- e. Xylene <620 ppb
- f. Total Petroleum Hydrocarbon (TPH) <1 mg/1

- g. MTBE <0.5 ppb
- h. Suspended Solids <300 mg/1

2. <u>Discharge Water</u> Permittee shall submit the following information for review and approval by District prior to the connection of Permittee's facilities to the Wastewater System and discharge into the Wastewater System:

a. Flow Rate The proposed maximum flow rate that Discharge Water will be discharged by Permittee into the Wastewater System.

b. Discharge Water Analysis A detailed analysis of the Discharge Water prior to treatment, performed by certified laboratory, including analysis of organic compounds VOCs and SVOCs (by EPA method 8260-full scan), Title 22 metals, particulate matter (TDS and TSS), water chemistry (PH and alkalinity), and natural organic matter (EPA 415.1 or Standard Methods 18th Edition 531 a, b, c, or d), and such other analysis as may be requested by District.

c. Treatment Plan A comprehensive description of the treatment plan including, but not limited to, site plan, treatment method(s), proposed treatment medium and/or treatment equipment specifications, and any other pertinent information related to the treatment as may be requested by District. An activated carbon "polishing unit" shall be used as the final treatment of the Discharge Water prior to discharge into the Wastewater System.

d. Feasibility Evaluation Feasibility evaluation describing in detail that the planned treatment will comply with all permit requirements at 125% maximum pollutant influent concentrations. The feasibility evaluation shall include calculations and supporting documentation signed and stamped by a California licensed professional engineer or registered geologist with at least three (3) years in experience in designing remediation systems for the type of treated Discharge Water proposed by Permittee to be discharged into the Wastewater System. A copy of the engineer's or geologist's resume providing the above information shall be attached to the submittal.

3. <u>Connection to Wastewater System</u> Permittee shall only be entitled to connect to the Wastewater System at a point and in a manner as approved by District. District inspectors must approve all connections and disconnections to the Wastewater System. The portion of the discharge connection into the Wastewater System that is underground must remain uncovered until approved by District. Connection to the Wastewater System shall also include the installation of an approved meter to monitor the quantity of treated Discharge Water discharged into the Wastewater System. Permittee shall provide District with at least forty-eight (48) hours prior written notice of the time and date of the first planned discharge.

4. <u>Inspection</u> Permittee shall provide District with safe and unrestricted access to Permittee's Discharge Water treatment system and connection facilities during the term of this Permit. Permittee shall provide a sample tap, approved by District, to allow quick and easy sample collection during operation. The District will collect random samples at such times as determined by District at its sole discretion. Permittee, as the owner of the Property and/or as the responsible party, has the authority or has obtained the written authorization from the owner of

the Property to perform and undertake all obligations required by this Permit including, but not limited to, providing District with unrestricted access to the Property and the Treatment System for any and all purposes related to this Permit. In the event the Treatment System is located on real property other than the Property (Other Property), Permittee shall obtain written permission from the owner of the Other Property in order to provide the District with unrestricted access to the Other Property and the Treatment System for any and all purposes related to this Permit.

5. <u>Operation</u> The operation of the treatment system and discharge of Discharge Water into the Wastewater System shall be in strict compliance with the requirements of this Permit. In the event the Discharge Water does not comply with the requirements of this Permit, at any time, Permittee shall immediately stop discharging into the Wastewater System and immediately notify District. Permittee shall not resume discharging into the Wastewater System until the cause of the noncompliance is ascertained and the condition creating such noncompliance is corrected by Permittee. In addition, Permittee shall immediately stop discharging into the Wastewater System if directed by the District for any reason. Afterwards, District shall notify Permittee if, when, and under what conditions that discharging may resume into the Wastewater System.

6. <u>Sampling</u> Permittee shall retain the services of a laboratory capable of analyzing to the required detection limits. The analysis of volatile organic chemical concentrations in the discharge shall be performed by a California State Health Department certified mobile or an off-site laboratory using EPA method 8260 or other method approved by the District. The laboratory shall collect a field and travel blank. The travel blank need only be tested if a suspected discharge violation occurs. Permittee shall report all Discharge Water testing results by facsimile or personal delivery, as soon as available but no later than 24 hours after receiving the test results from the designated laboratory. The test results shall include the date and time of sampling and the instantaneous and cumulative flow readings at the time of sampling. The District may require the laboratory to perform additional sampling and/or rush sampling as determined by District.

The District requires weekly sampling of the "polishing unit" influent and the system effluent until the system's reliability is established to the District's satisfaction. If no discharge violations occur, District may allow Permittee to reduce sampling to twice monthly and, if the "polishing unit" influent is non-detect, the effluent sample need not be analyzed. Notwithstanding, monthly sampling of the Discharge Water effluent, between each treatment unit, and the influent is required. In the event of discharge violations, District, at its sole discretion, may increase sampling requirements.

7. <u>Violations</u> In the event Permittee violates or breaches any term, condition, or requirement of this Permit, District may exercise any and all rights provided in this Permit, District's ordinances, rules and regulations, and any other law or regulation, at law or in equity. No remedy or election shall be deemed to be exclusive but shall, wherever possible, be cumulative with other remedies. In addition, District may take any or all of the following actions with respect to any breach or violation, as determined by District in its sole discretion, require Permittee to discontinue discharges pursuant to this Permit and impose additional conditions or requirements for continued discharge of Discharge Water, and take any other actions as

determined by District to protect the operation and integrity of the Wastewater System.

8. <u>Indemnification</u> To the maximum extent allowed by law, Permittee shall indemnify, defend and hold harmless District, its elected officials, directors, officers, employees, agents, and consultants, from and against all damages, liabilities, claims, actions, demands, costs and expenses, including, but not limited to, costs of investigations, lawsuits and other proceedings in law or in equity, settlement costs, attorneys' fees and costs, and penalties, administrative fines, or violations of any kind, which arise out of, or result from or relate to: (a) any injury to person or property in connection with this permit and/or the discharge of the Discharge Water; (b) any intentional or negligent act or omission on the part of Permittee or its agents, consultants, representatives, contractors, employees, invitees, or licensees; (c) any breach of the terms and conditions of this Permit by Permittee; and (d) violation of any local, state or federal law, regulation, ordinance.

9. <u>**Costs and Expenses**</u> Permittee shall pay all costs and expenses related to this Permit including, but not limited to the following:

- A. Permit fee of six hundred dollars (\$600) per year;
- B. Discharge rate fee of six dollars (\$6) per one thousand (1,000) gallons;
- C. Laboratory and testing costs;
- D. District's cost and expenses including, but not limited to, inspections, testing, and sampling.

District shall send statements to Permittee for the costs and expenses in such intervals as determined by District. Statements are due and owing upon receipt and are delinquent if not paid within sixty (60) days after the date of the statement. Delinquent statements shall be subject to penalties and interest charges.

10. <u>Effective Date and Term of Permit</u> This Permit shall be effective upon District's written notification to Permittee that all submittals and information required for the requested discharge has been received and approved by District. This Permit may be revoked and terminated with or without prior notice to Permittee for any breach of this permit or as necessary to protect the integrity of the Wastewater System, as determined at the sole discretion of District.

11. <u>General Provisions</u>

a. **Recitals** The recitals stated at the beginning of this Permit of any matters or facts shall be conclusive proof of their truthfulness thereof and the terms and conditions stated in the recitals, if any, shall be deemed a part of this Permit.

b. Authorizations All individuals executing this Permit and other documents on behalf of the respective parties certify and warrant that they have the capacity and have been duly authorized to so execute the documents on behalf of the entity so indicated. Each signatory shall also indemnify the other parties to this Permit, and hold them harmless, from any and all damages, costs, attorneys' fees and costs and other expenses, if the signatory is not so

authorized.

c. Construction The provisions of this Permit should be liberally construed to effectuate its purposes. The language of all parts of this Permit shall be construed simply according to its plain meaning and shall not be construed for or against either party, as each party has had the opportunity to have their counsel review it. Whenever the context and construction so requires, all words used in the singular shall be deemed to be used in the plural, all masculine shall include the feminine and neuter, and vice versa.

d. **Notice** All notices, requests, demands, and other communications required to or permitted to be given under this Permit shall be in writing and shall be conclusively deemed to have been duly given (1) when hand delivered to the other party; or (2) when received via telex or facsimile at the address or number stated below (provided that notices given by facsimile shall not be effective unless either (a) the facsimile is a routine lab report, (b) a duplicate copy of such facsimile notice is promptly given by depositing same in a United States post office with first-class postage prepaid and addressed to the parties as stated below, or (c) the receiving party delivers a written confirmation of receipt for such notice either by facsimile or any other method permitted under this paragraph; additionally, any notice given by telex or facsimile shall be deemed received on the next business day if such notice is received on the next business day if such notice is received after 5:00 p.m. (recipient's time) or on a nonbusiness day); or (3) three business days after the same have been deposited in a United States post office with first class or certified mail return receipt requested postage prepaid and addressed to the parties as set forth below; or (4) the next business day after same have been deposited with a national overnight delivery service (Federal Express, DHL Worldwide Express, Express Mail, etc.), postage prepaid, addressed to the parties as stated below with next-business-day delivery guaranteed, provided that the sending party receives a confirmation of delivery from the delivery service provider.

DISTRICT:	General Manager South Tahoe Public Utility District 1275 Meadow Crest Drive South Lake Tahoe, CA 96150
With Copy to:	Gary M. Kvistad Hatch and Parent 21 East Carrillo Street Santa Barbara, CA 93101

Permittee:

Consultant:

Each party shall make an ordinary, good faith effort to ensure that it will accept or receive notices that are given in accordance with this paragraph and that any person to be given notice actually receives such notice. A party may change or supplement the addresses given above, or designate additional addresses, for purposes of this Section by giving the other party written notice of the new address in the manner stated above.

e. Joint and Several Permittee and Consultant shall be jointly and severally responsible for the obligations under this Permit. This Permit may be enforced against either Permittee or Consultant separately or against both jointly.

f. Successors and Assigns This Permit shall be binding on and shall inure to the benefit of the parties and their respective heirs, legal representatives, successors and assigns.

g. Governing Law The validity and interpretation of this Permit shall be governed by the laws of the State of California without giving effect to the principles of conflict of laws, with venue for all purposes proper only in the County of El Dorado, State of California.

h. Severability If any term, provision, covenant, or condition of this Permit shall be or become illegal, null, void or against public policy, or shall be held by any court of competent jurisdiction to be illegal, null, void or against public policy, the remaining provisions of this Permit shall remain in full force and effect and shall not be affected, impaired or invalidated. The term, provision, covenant or condition that is so invalidated, voided or held to be unenforceable shall be modified or changed by the parties to the extent possible to carry out the intentions and provisions of this Permit.

i. Attorneys' Fees If any action at law or equity, including an action for declaratory relief, is brought to enforce or interpret the provisions of this Permit, the prevailing party shall be entitled to recover actual attorneys' fees and costs which may be determined by the court in the same action or in a separate action brought for that purpose. The attorneys' fees and costs to be awarded shall be made to fully reimburse for all attorneys' fees, paralegal fees, costs and expenses actually incurred in good faith, regardless of the size of the judgment, it being the intention of the parties to fully compensate for all attorneys' fees, paralegal fees, costs and expenses paid or incurred in good faith.

j. Waiver The waiver of any breach of any provision of this Permit by any party to this Permit shall not be deemed to be a waiver of any proceeding or subsequent breach under the Permit, nor shall any waiver constitute a continuing waiver. No waiver shall be

binding unless executed in writing by the party making the waiver.

k. Survival The covenants, representations, warranties and agreements contained in this Permit shall survive the discontinuance of Discharge Water discharges into the collection system and/or termination of this Permit.

I. Entire Agreement and Amendment This Permit contains the entire understanding and agreement of the parties and there have been no promises, representations, agreements, warranties or undertakings by any of the parties, either oral or written, of any character or nature binding except as stated in this Permit. This Permit may be altered, amended or modified only by an instrument in writing, executed by the parties to this Permit and by no other means. Each party waives their future right to claim, contest or assert that this Permit was modified, canceled, superseded or changed by any oral agreement, course of conduct, waiver or estoppel. **IN WITNESS WHEREOF**, the parties have executed this Permit as of the date and place first stated above.

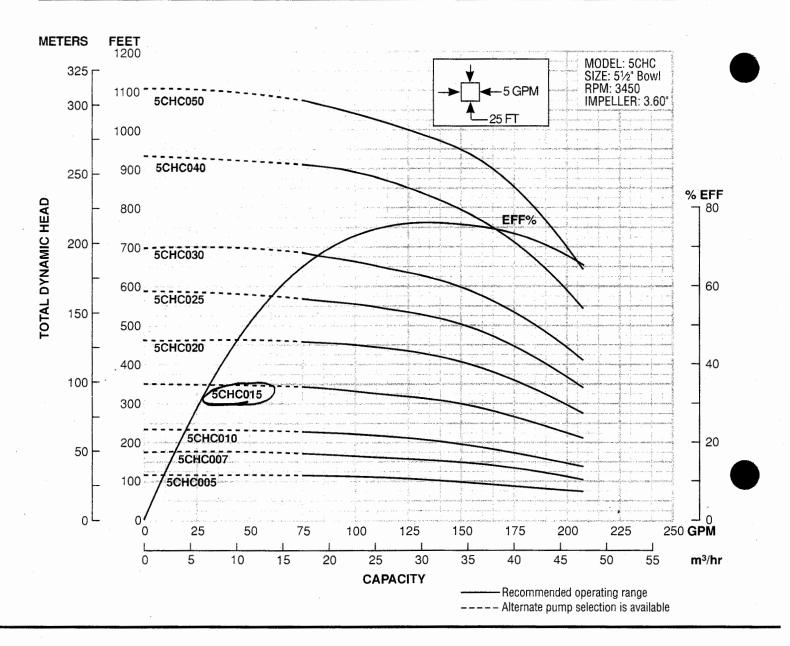
District _____

Permittee _____

Consultant _____

OWNER AUTHORIZATION

(Owner of the Property to complete in the event the owner is not the Permittee)


The undersigned (Owner) is the owner of the Property described in this Permit. The Owner has entered into an agreement with Permittee authorizing Permittee to fully perform all of the terms and conditions of this Permit. In consideration of District's issuance of this Permit, Owner unconditionally guarantees, for the benefit of District, Permittee's performance of the terms and conditions of this Permit. If Permittee fails to perform any of the terms and conditions of this Permit. If Permittee fails to perform any of the terms and conditions of this Permit. If Permittee fails to perform any of the terms and conditions of this Permit, District can enforce this Permit against Permittee, Consultant and Owner, individually or jointly. Owner waives the right to require District to proceed against Permittee and/or Consultant and the right to receive notices of nonperformance or demands for performance. Owner represents and warrants to District that Owner owns the entire ownership interest in the Property, or has the authority to bind all other owners to the obligations of this authorization.

OWNER _____

APPENDIX C. SUBMERSIBLE PUMP CURVE

Model 5CHC 150 GPM

DIMENSIONS AND WEIGHTS

HP	Stages	W.E. Order Number	W.E. Length	W.E. Wt. (lbs.)
	0	5CHC00544CTB	211/16	60
5	2 -	5CHC00564CTB	237/32	62
7½	3 -	5CHC00744CTB	251/8	73
	3 -	5CHC00764CTB	281/16	75
10	4	5CHC01064CTB	3213/16	88
715	6	5CHC01564CTB	4227/64	114
20	8	5CHC02064CTB	52 ¹ /16	140
25	10	5CHC02564CTB	615/8	166
30	12	5CHC03064CTB	711/32	192
40	16	5CHC04064CTB	90 ²⁷ /64	244
50	19	5CHC05064CTB	10453/64	283

(All dimensions in inches and weights in lbs. Do not use for construction purposes.)

PLEASE NOTE:

- Order motors separately.
- For intermediate horsepower pumps consult factory.
- Solid line is recommended operating range. The dotted line (- - - -) signifies an alternate pump selection is available.
- Please specify all options changes in W.E. order number.

4" NPT DISCHARGE CONNECTION

MATERIALS OF CONSTRUCTION

Part Name	Material
Shaft	ASTM A582 TYPE 416
Coupling	ASTM A582 S41600 CD
Suction Adapter	ASTM A48 CL 40
Discharge Bowl	ASTM A48 CL 30B
Bronze Bearings	ASTM B584
Discharge Bowl Bearing	ASTM B584
Taperlocks	ASTM A108 GR 101B
Bowl	ASTM A48 CL 30B
Upthrust Collar	ASTM A276 S41400
Impeller	ASTM B584
Fasteners	SAEJ429 GR 8
Cable Guard	ASTM A240 S 30400
Suction Strainer	ASTM A240 S 30400

APPENDIX D. FIELD DATA SHEETS

DAILY LOG

Page No. ____ of ____

Proj. Name_____ Date_____

Proj. No._____

Task No._____

Weather_____Contractor_____

Time	Comments

By:_____

Aquifer Test

Proj. Name_____

Date_____ Weather_____

Well ID _____

DTW (ft btoc) _____

Water Column (ft) _____

Time	Purge Vol.	Flow Rate	DTW	Drawdown	Observation Well DTW	Specific Capacity	Sand
	Gallons	GPM	ft btoc	ft	ft btoc	gpm/ft	cc / ppm

VIDEO SURVEY LOG

Page No. ____ of ____

Proj. Name_____

Date_____

Proj. No._____

Task No._____

Contractor_____

 Well ID_____
 Units ____ btoc, bgs (circle one)
 Observed By_____

Vertical	Horizontal	Joints		een	Comments
Depth	Depth	Joints	Тор	Bottom	Comments

J:\South Tahoe Public Utilities District\Project\1601030 South Y Project\South Y Work Plan\Appendix D - Field Data Sheets\Video Log

DAILY DEVELOPMENT REPORT

Client	Page No of
Proj. Name	Proj. No
Date	Task No

Well ID	Contractor
Static Water Level	Observed By
Totalizer Start	Time Start
Totalizer Stop	Time Stop

Time	Flow	Pumping Level	Draw Down	Spec. Yield	No. Of Surges	Sand Read.	Turbidty	Comments
	(gpm)	(ft btoc)	(ft)	(gpm/ft)			NTU	
						Ву		

	C	\mathbf{i}		PURG	E LOG		Page No of		
G		Ľ							
	Consu	ltants	Date				Task No		
	Consu	itants	Weather_			Contractor			
Well ID _			DTW (ft l	btoc)			T.D. (ft bto	oc)	
Water Column (ft)			I.D. (in) Casing Vol. (gal)			ol. (gal)	x3 =		gal
Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	D.O.	Turb.	Cond.	(

Time	Purge Vol.	Flow Rate	DTW	Temp.	pН	D.O.	Turb.	Cond.	ORP
	Gallons	GPM	ft btoc	°C		mg/L	NTUs	uhmos/cm	

Calibration:

Ву_____

APPENDIX E. OBSTRUCTION PERMIT

Δ1	20	RO	11		
11		RU	· V	Г.	

MAR 2 1 2016

City of South Lake Tahoe

Public Works

CITY OF SOUTH LAKE TAHOE APPLICATION/PERMIT FOR ROAD CLOSURE/OBSTRUCTION IN RIGHT OF WAY

Date: <u>3-14-2016</u>	APN:023-65-518
Name of Owner: Lukins Brothers Water Com	Phone: 530-541-2606
Job Address: <u>843 Hazel Drive, South Lake Ta</u>	ahoe_Nearest Cross Street:Tahoe Vista Drive
Owner's Mailing Address: <u>2301 West Way S</u>	South Lake Tahoe, CA 96150
Name of Contractor: <u>GEI_Consultants/Carso</u>	C
Contractor's License #:NA/745270	Current C.S.L.T. Business License #: NA
Current Liability Insurance on file: Yes	No Traffic Control Plan:
The manhole is located approximatly 60-feet	the project site to the sanitary sewer manhole TK 191. east of the 843 Hazel Drive .
Work scheduled to begin: <u>March 21, 2016</u>	
Obstruction in Right of Way Road Closure (One day) 2-30 day Road Closure	\$233.00 \$363.00 \$597.00
Fee: <u>\$233.00</u>	Receipt #:
Date Issued: 3/21/2016 Public Serv	ices Department Approval: Randy Carlson

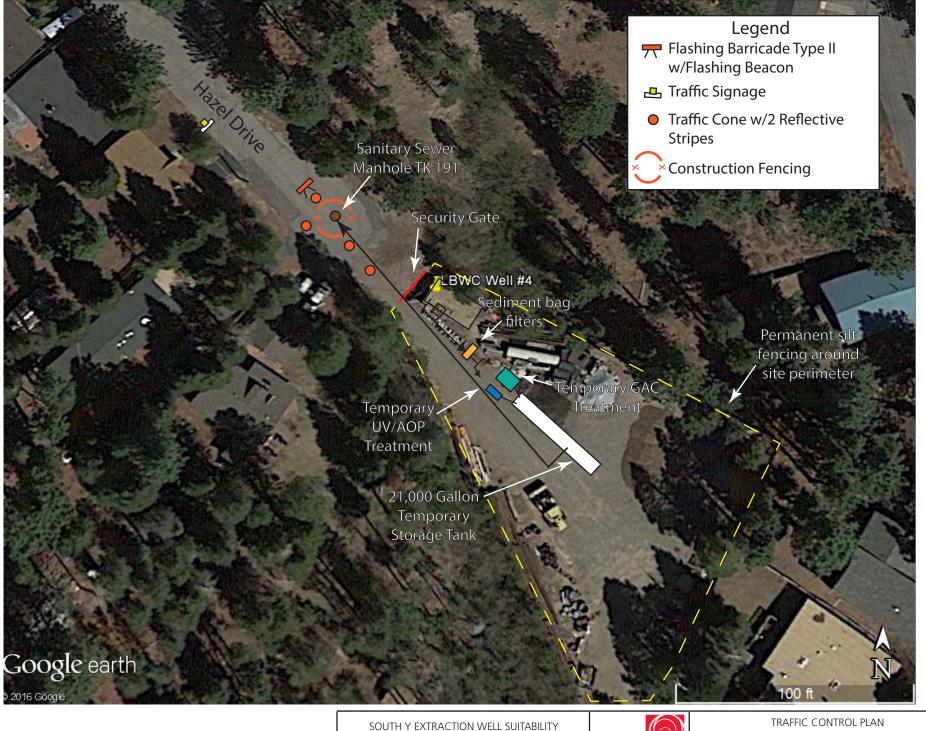
ACKNOWLEDGEMENT OF CITY CODE: Applicant has reviewed all aspects of the South Lake Tahoe City Code which may be applicable to the project. By my signature which is placed below, I certify, under penalty of perjury under the laws of the State of California, that I have reviewed the South Lake Tahoe City Code, and that I will comply with all aspects of the South Lake Tahoe City Code as it may be applicable to this project.

Signature of Owner/Contractor

PYAN ALWARD Print Name

Call for Inspections at (530) 542-6030

CERTIFICATE OF LIABILITY INSURANCE


GEICONS-01 C,

DATE (MN

2/	2	6/	2	U	

C B	ERT ELO	CERTIFICATE IS ISSUED AS A IFICATE DOES NOT AFFIRMATI W. THIS CERTIFICATE OF INS ESENTATIVE OR PRODUCER, AN	IVEL' SURA	Y OI	R NEGATIVELY AMEND, E DOES NOT CONSTITU	EXTEND OR AL	TER THE CO	OVERAGE AFFORDED B	E HOI	E POLICIES
t	ie te	RTANT: If the certificate holde erms and conditions of the policy cate holder in lieu of such endors	, cer	tain	policies may require an e					
	DUCE			. ,		CONTACT NAME:				
		Gough ard Street				PHONE (A/C, No, Ext): (617) 328-6555 [A/C, No): (617) 328-6888				
Suit	e 32	0				E-MAIL ADDRESS: boston(
Qui	ncy,	MA 02169						RDING COVERAGE		NAIC #
			_			INSURER A : National	Union Fire Ins	urance Company of Pittsburg	h, PA	19445
INSU	RED							alty Company (CNA) A,	XV	20443
		GEI Consultants, Inc.				INSURER C : Steadf	ast Insuran	ce Company		26387
		2868 Prospect Park Drive Suite 400				INSURER D :				
		Rancho Cordova, CA 95670				INSURER E ;				
-	_					INSURER F :				
_	_				E NUMBER:			REVISION NUMBER:		
II C	IDIC/	IS TO CERTIFY THAT THE POLICIE ATED. NOTWITHSTANDING ANY R FICATE MAY BE ISSUED OR MAY JSIONS AND CONDITIONS OF SUCH	EQUI PER	REM TAIN	ENT, TERM OR CONDITION THE INSURANCE AFFORM	N OF ANY CONTRA DED BY THE POLIC BEEN REDUCED BY	CT OR OTHER CIES DESCRIE PAID CLAIMS	R DOCUMENT WITH RESPEC BED HEREIN IS SUBJECT TO	OT TC	WHICH THIS
		TYPE OF INSURANCE	ADDL INSD	SUBF	POLICY NUMBER	POLICY EFF (MM/DD/YYYY)	POLICY EXP (MM/DD/YYYY)	LIMITS		
Α	Х	COMMERCIAL GENERAL LIABILITY				197	1.10 A.C.	EACH OCCURRENCE \$	6	1,000,000
		CLAIMS-MADE X OCCUR	X	X	5180276	03/01/2016	03/01/2017	DAMAGE TO RENTED PREMISES (Ea occurrence) 5	6	300,000
	_							MED EXP (Any one person) \$	6	25,000
								PERSONAL & ADV INJURY \$	\$	1,000,000
	GE	V'L AGGREGATE LIMIT APPLIES PER:						GENERAL AGGREGATE	\$	2,000,000
		POLICY X PRO- X LOC						PRODUCTS - COMP/OP AGG		2,000,000
-	A117			-				COMBINED SINGLE LIMIT	5 5	1,000,000
A	X		x x	x	2961705	03/01/2016	03/01/2017	(Ea accident) BODILY INJURY (Per person)	\$.,,
~	-	ALL OWNED SCHEDULED						BODILY INJURY (Per accident)	\$	
	x	AUTOS AUTOS HIRED AUTOS X NON-OWNED AUTOS				1		PROPERTY DAMAGE (Per scciden!)	\$	
		HIRED AUTOS							\$	
-	x	UMBRELLA LIAB X OCCUR						EACH OCCURRENCE	\$	1,000,000
в		EXCESS LIAB CLAIMS-MADE	x	X	6011396137	03/01/2016	03/01/2017	AGGREGATE	\$	1,000,000
		DED RETENTION \$ 0							\$	
		RKERS COMPENSATION DEMPLOYERS' LIABILITY						X PER OTH- STATUTE ER		
Α	ANY	PROPRIETOR/PARTNER/EXECUTIVE] N/A	X	012016046	03/01/2016	03/01/2017	E.L. EACH ACCIDENT	\$	1,000,000
	(Mai	ndatory in NH)						E.L. DISEASE - EA EMPLOYEE	\$	1,000,000
	If ye	s, describe under SCRIPTION OF OPERATIONS below						E.L. DISEASE - POLICY LIMIT	\$	1,000,000
С	Pro	ofessional Liab		-	PEC023359500		03/01/2017			5,000,000
С			1		PEC023359500	03/01/2016	03/01/2017	7 Aggregate		5,000,000
All RFI Dai	cove P No. Iny L	TION OF OPERATIONS / LOCATIONS / VEHIC rages are in accordance with the po- 620850: South Y Extraction Well S Lukins; Lukins Brothers Water Com to general, auto and umbrella liabil and non-contributory. A waiver of	olicy uitab pany ity wi	term ility l ; and	s and conditions. Investigation I South Tahoe Public Utility required by written contra	/ District, its officers	s and employed	ees shall be listed as additi compensation and profes	ional i siona	nsured with I liability) is
	PTI	FICATE HOLDER				CANCELLATION	1			
South Tahoe Public Utility District Attn: General Manager 1275 Meadow Crest Drive South Lake Tahoe, CA 96150						SHOULD ANY OF THE ABOVE DESCRIBED POLICIES BE CANCELLED BEFORE THE EXPIRATION DATE THEREOF, NOTICE WILL BE DELIVERED IN ACCORDANCE WITH THE POLICY PROVISIONS.				
						Muthorized REPRESENTATIVE Muthoul Harling				

© 1988-2014 ACORD CORPORATION. All rights reserved. The ACORD name and logo are registered marks of ACORD

INVESTIGATION SOUTH TAHOE PUBLIC UTILITY DISTRICT

843 HAZEL DRIVE

Appendix B: Field Photos

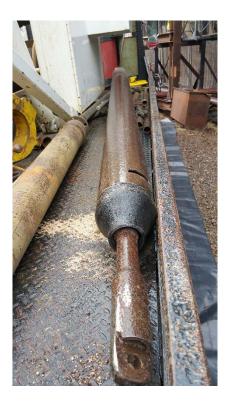
1. Sanitary sewer manhole and view of well house

2. Traffic control and protection around sanitary sewer discharge to manhole

3. Column Pipe and PVC sounding tube, submersible pump and motor

4. Silt fencing present on side of site adjacent to SEZ

5. Frac Tank for storing water prior to discharge to sanitary sewer


6. Rented 15 micron bag filters

7. Evoqua PV2000 GAC vessel

8. Wire brush used for mechanical cleaning

9. Bailer used after mechanical cleaning

10. UV Pilot Testing with chlorine solution and chlorine pump

11. Pump discharge head and access pipe for spinner tool

12. Pilot-test sample station

13. Pacific Surveys spinner tool

14. Pacific Surveys depth discrete sampling tool

15. Transducer installed into Rockwater Well

16. Pressure transducer installed into LBWC #4 Well

17. Rockwater Well pump column, looking down the well

18. Flow meter at well head

19. Carson Pump rig

20. 032816 Constant-Rate Imhoff Cones time 1449

21. 032816 Constant-Rate Imhoff Cones time 1649

Appendix C: Field Data Sheets

Appendix C.1 – Video Survey Data

VIDEO SURVEY LOG

Proj. Name: South Y Investigation Date: February 17, 2016 Page No. 1 of 1

n Proj. No.1601030 Task No.3 Contractor: Carson Pumps Observed By: Ryan Alward

Well ID: Well #4

Units: btoc Note: Stick-up is 0.85 feet above floor

Vertical	Horizontal	Joints	S	Screen	Conments
Depth	Depth	JOINTS	Тор	Bottom	Comments
	9		х		Corrosion, Louvered Casing
	15				SWL: 16.22 ft btoc measured with sounder
	26			х	
	28		х		
	40				Louvers
	41				
	47			x	Bottom of louver (50% open)
	48		х		
	54				Well cleaned up
	66			х	
	68				Louvers are more open (>50% open)
	86				
	88		х		
94					Increased growth on casing (<20% open)
	107			х	Louvers < 20% open
	119				Bottom of 10-inch, Open Hole
	121				Formation gravel, granite.
123					Hole deviating
133					Fill - Bottom
Raising Camera	:				
	101				Tubercols, louvers <20% open
	93				Louvers ~50% open
	7	x			

Appendix C.2 – Step-test Data

SOUTH Y EXTRACTION WELL EVALUATION

LBWC #4 Step-Test

Field Data provided by Ivo Bergsohn of STPUD

	Total	izer multiplier:	10											
Date	Time	Pumping Time (min)	Totalizer (Galls x 10)	Total Sand Reading (ml)	Line Press. (psi)	DTW (ft bmp)	Gallons Pumped Since Last Reading (galls)	Total Gallons Pumped (galls)	Pumping Rate (gpm)	Drawdown (s)	Specific Capacity (Q/s)	Sand Since Last Reading (ml)	1/ Specific Capacity (s/Q)	NOTES
06/24/16	8:17 AM	0	509902	nr	0	15.72	0	0	0	0.00		nr		Pump Off
06/24/16	9:02 AM	0.0	509902	nr	0	15.72	0	0	0	0.00		nr		
06/24/16	9:16 AM	0.0	509902	nr	0	15.72	0	0	0	0.00		nr		Pump On
06/24/16	9:18 AM	2.0	509947	nr	nr	nr	455	455	228			nr		Pump Off
06/24/16	11:09 AM	0.0	509947	nr	0	15.76	0	0	0	0.00		nr		Pump On
06/24/16	11:12 AM	3.0	509978	nr	120	19.41	310	310	103	3.65	28.31	nr	0.04	
06/24/16	11:15 AM	6.0	510011	nr	120	19.58	330	640	110	3.82	28.80	nr	0.03	
06/24/16	11:18 AM	9.0	510042	nr	120	19.66	310	950	103	3.90	26.50	nr	0.04	
06/24/16	11:21 AM	12.0	510074	nr	120	19.72	320	1,270	107	3.96	26.94	nr	0.04	Imhoff Sample 1
06/24/16	11:24 AM	15.0	510107	nr	120	19.76	330	1,600	110	4.00	27.50	nr	0.04	
06/24/16	11:27 AM	18.0	510139	nr	120	19.81	320	1,920	107	4.05	26.34	nr	0.04	
06/24/16	11:30 AM	21.0	510171	nr	120	19.85	320	2,240	107	4.09	26.08	nr	0.04	
06/24/16	11:33 AM	24.0	510203	nr	120	19.88	320	2,560	107	4.12	25.89	nr	0.04	
06/24/16	11:36 AM	27.0	510235	nr	120	19.91	320	2,880	107	4.15	25.70	nr	0.04	
06/24/16	11:39 AM	30.0	510267	nr	120	19.93	320	3,200	107	4.17	25.58	nr	0.04	Imhoff Sample 2
06/24/16	11:42 AM	33.0	510300	nr	120	19.96	330	3,530	110	4.20	26.19	nr	0.04	
06/24/16	11:45 AM	36.0	510338	nr	100	21.11	380	3,910	127	5.35	23.68	nr	0.04	
06/24/16	11:48 AM	39.0	510380	nr	100	21.24	420	4,330	140	5.48	25.55	nr	0.04	
06/24/16	11:51 AM	42.0	510425	nr	100	21.30	450	4,780	150	5.54	27.08	nr	0.04	
06/24/16	11:54 AM	45.0	510470	nr	100	21.37	450	5,230	150	5.61	26.74	nr	0.04	
06/24/16	11:57 AM	48.0	510509	nr	100	21.39	390	5,620	130	5.63	23.09	nr	0.04	
06/24/16	12:00 PM	51.0	510552	nr	100	21.43	430	6,050	143	5.67	25.28	nr	0.04	
06/24/16	12:03 PM	54.0	510595	nr	100	21.45	430	6,480	143	5.69	25.19	nr	0.04	
06/24/16	12:06 PM	57.0	510638	nr	100	21.47	430	6,910	143	5.71	25.10	nr	0.04	
06/24/16	12:09 PM	60.0	510681	nr	100	21.50	430	7,340	143	5.74	24.97	nr	0.04	
06/24/16	12:12 PM	63.0	510724	nr	100	21.52	430	7,770	143	5.76	24.88	nr	0.04	
06/24/16	12:15 PM	66.0	510767	nr	100	21.53	430	8,200	143	5.77	24.84	nr	0.04	
06/24/16	12:18 PM	69.0	510817	nr	80	22.50	500	8,700	167	6.74	24.73	nr	0.04	
06/24/16	12:21 PM	72.0	510868	nr	80	22.87	510	9,210	170	7.11	23.91	nr	0.04	
06/24/16	12:24 PM	75.0	510919	nr	80	22.60	510	9,720	170	6.84	24.85	nr	0.04	Imhoff Sample 3
06/24/16	12:27 PM	78.0	510970	nr	80	22.63	510	10,230	170	6.87	24.75	nr	0.04	
06/24/16	12:30 PM	81.0	511021	nr	80	22.65	510	10,740	170	6.89	24.67	nr	0.04	
06/24/16	12:33 PM	84.0	511072	nr	80	22.68	510	11,250	170	6.92	24.57	nr	0.04	
06/24/16	12:36 PM	87.0	511123	nr	80	22.71	510	11,760	170	6.95	24.46	nr	0.04	
06/24/16	12:39 PM	90.0	511174	nr	80	22.73	510	12,270	170	6.97	24.39	nr	0.04	Imhoff Sample 4

SOUTH Y EXTRACTION WELL EVALUATION

LBWC #4 Step-Test

Field Data provided by Ivo Bergsohn of STPUD

Totalizer multiplier:

10

Date	Time	Pumping Time (min)	Totalizer (Galls x 10)	Total Sand Reading (ml)	Line Press. (psi)	DTW (ft bmp)	Gallons Pumped Since Last Reading (galls)		Pumping Rate (gpm)	Drawdown (s)	Specific Capacity (Q/s)	Sand Since Last Reading (ml)	1/ Specific Capacity (s/Q)	NOTES
06/24/16	12:42 PM	93.0	511226	nr	80	22.74	520	12,790	173	6.98	24.83	nr	0.04	
06/24/16	12:45 PM	96.0	511277	nr	80	22.76	510	13,300	170	7.00	24.29	nr	0.04	
06/24/16	12:48 PM	99.0	511328	nr	80	22.77	510	13,810	170	7.01	24.25	nr	0.04	Pump Off
06/24/16	12:49 PM	100	511328	nr	0	nr		13,810	139	7.01	19.90			end of test

SOUTH Y EXTRACTION WELL EVALUATION

LBWC #4 Step-Test: Field Water Quality Parameters

Data provided by Ivo Bergsohn of STPUD

Date	Time	Pumping Time (min)	pH (SU)	E.C. (us/cm)	Temp (deg C)	Turbidity (NTU)	NOTES
06/24/16	11:09 AM	0					Pump On @ 11:09
06/24/16	11:22 AM	13.0	7.21	627	10.3		Imhoff 1
06/24/16	11:39 AM	30.0	6.47	483	7.8		Imhoff 2
06/24/16	11:50 AM	41.0					Lab Sample
06/24/16	12:25 PM	76.0	6.70	477	10.0	26.00	Imhoff 3
06/24/16	12:46 PM	97.0	6.74	474	10.3		Imhoff 4

Appendix C.3 – Constant-rate Test Data

				Aquifer	Test Da	ata - Pu	mping				-	OUTH	TAHOF	
Project	South Y Extrac	tion Well Si	uitability Inv	,	Pump Well	LBWC Wel	#4				9	1	AD F	
-	843 Hazel Driv		anability inv	•	Pump On				•		((;	5)
Hydrogeologi		I. Bergsohr	n; R. Allwar	d	Pump Off				•		AUB	ewer . 1	950 · Water RICT	
Pump Contra		Carson Pu				/ake/Model:		HC020 (8	Stage)			S UTI	LITY DIE	
Comments: P	ump mated to F	- ranklin 20	Hp Motor #	2366149020	(3450 RPM); I	Discharge to	STPUD se	wer				MF:		10
Total Dis	scharge (galls):		162,870	To	tal Time (min):	1445	Ra	ate (gpm):	113		page _	0	f	
								Line					Specific	
	Time			er Level		Discharge		Press		Water C			Capacity	Comments
Date	Time	Total(min)	Depth	Drawdown	Total x MF	Q _{inst}	Q _{avg}	PSI	Sand	°C	рН	EC	(gpm/ft d.d.)	
3/28/2016	13:57:00	0	15.32	0.00	511375									Pump OFF
3/28/2016	13:59:00	0	15.46	0.00	511375									
3/28/2016	14:00:00	0	15.46	0.00	511375							-		Pump ON
3/28/2016	14:03:00	3	18.68	3.22	511407	107	107	124					33.13	
3/28/2016	14:06:00	6	18.84	3.52	511438		105	124					29.83	
3/28/2016	14:09:00	9	18.93	3.61	511468		103	124				-	28.62	
3/28/2016	14:12:00	12	18.98	3.66	511498		103	124					28.01	
3/28/2016	14:15:00	15		3.68	511528		102	124					27.72	
3/28/2016	14:20:00	20		3.75	511578		102	124					27.07	
3/28/2016	14:25:00	25	19.11	3.79	511628		101	124					26.70	
3/28/2016	14:30:00	30	19.15	3.83	511678		101	124		9.60	6.68	447	26.37	
3/28/2016	14:35:00	35	19.20	3.88	511728		101	124					25.99	
3/28/2016	14:40:00	40	19.20	3.88	511778		101	124					25.97	
3/28/2016	14:45:00	45	19.23	3.91	511829		101	124					25.80	
3/28/2016	14:50:00	50	19.27	3.95	511879		101	124					25.52	
3/28/2016	14:55:00	55	19.28	3.96	511930		101	124					25.48	
3/28/2016	15:00:00	60	19.30	3.98	511980		101	124		8.70	6.80	447	25.34	
3/28/2016	15:05:00	65	19.31	3.99	512031	102	101	124					25.29	
3/28/2016	15:11:00	71	19.33	4.01	512092	102	101	124				-	25.18	
3/28/2016	15:15:00	75	19.34	4.02	512132	100	101	124					25.11	
3/28/2016	15:20:00	80	19.35	4.03	512183		101	124					25.06	
3/28/2016	15:25:00	85	19.35	4.03	512233		101	124		0.40	0.40	400	25.05	
3/28/2016	15:30:00	90	19.37	4.05	512283		101	124		9.40	6.40	436		
3/28/2016 3/28/2016	15:50:00 16:01:00	110 121	19.41 19.43	4.09	512477 512581	97 95	100 100	124 124					24.49	Reading error (?)
3/28/2016	16:01:00	121	19.43	4.11	512581	95 106	100	124					24.25	Reading error (?)
3/28/2016	16:20:00	131		4.12	512087		100	124					24.31	
3/28/2016	16:30:00	140	19.44	3.98	512885		101	124						see Field Notes
3/28/2016	16:40:00	160	19.34	4.02	512000	96	100	124					24.97	
3/28/2016	16:50:00	170	19.48	4.16	512001		100	124						see Field Notes
3/28/2016	17:00:00	170	19.40	4.18	513181	111	100	124						Adjusted valve
3/28/2016	17:10:00	190	19.52	4.10	513282	101	100	124					23.90	
3/28/2016	17:20:00	200	19.54	4.22	513383		100	124					23.79	
3/28/2016	17:30:00	210	19.56	4.24	513484	101	100	124					23.69	
3/28/2016	18:00:00	240	19.57	4.25	513788		101	124					23.66	
3/28/2016	18:30:00	270	19.58	4.26	514089		101	124					23.60	
3/28/2016	19:00:00	300	19.59	4.27	514390		101	124					23.54	
3/28/2016	19:30:00	330	19.60	4.28	514689		100	124					23.46	
3/28/2016	20:00:00	360	19.61	4.29	514989		100	124					23.40	
3/28/2016	20:30:00	390	19.62	4.30	515288		100	124					23.33	
3/28/2016	21:00:00	420	19.63	4.31	515586		100	124					23.26	
3/28/2016	21:30:00	450	19.64	4.32	515885	100	100	124					23.20	
3/28/2016	22:00:00	480	19.65	4.33	516182	99	100	124					23.13	
3/28/2016	22:30:00	510	19.65	4.33	516479	99	100	124					23.11	
3/28/2016	23:00:00	540	19.65	4.33	516778	100	100	124					23.11	
3/28/2016	23:30:00	570	19.65	4.33	517076	99	100	124					23.10	
3/29/2016	0:00:00	600	19.66	4.34	517374	99	100	124					23.04	
3/29/2016	0:30:00	630	19.67	4.35	517672	99	100	124					22.98	
3/29/2016	1:00:00	660	19.67	4.35	517970	99	100	124					22.97	

Project South Y Extraction Well Suitability Inv. Pump Well: LBWC Well #4 Location 843 Hazel Drive, SLT, CA Pump On 3/28/2016: 14:00 Hydrogeologist I. Bergsohn; R. Allward Pump Off 3/29/2016: 14:05 Pump Contractor Carson Pump (Omar) Pump Make/Model: Goulds/5CHC020 (8 Stage)	Aquifer Test Data - Pumping														
Lacation Mathematic Pump Cn Mathematic Pump Cn Mathematic Mathematic <td>Project</td> <td>South V Extract</td> <td>tion Well Su</td> <td>uitability Inv</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td>OUTH</td> <td>TAHOE</td> <td></td>	Project	South V Extract	tion Well Su	uitability Inv								1	OUTH	TAHOE	
Hydrogologia Lengesonin R. Navard Pure Out 3202005 Laboration Strugg number 10 for Navard 2016 (Mon 2016) (Mon 2016) (Mon 2016) Mark Mondel Gudvight/ChC201 (B Navard 2016) (Mon 2016) Mark Mondel Gudvight/ChC201 (B Navard 2016) (Mon 2016) Mark Mondel Gudvight/ChC201 (B Navard 2016) Mark Mondel Gudvight/ChC201 (B Navard 2016) Mark Mark Mondel Gudvight/ChC201 (B Navard 2016) Mark Mark Mark Met August 2016 Mark Met August 2017 Mark Met August 2017 Mark Met August 2017 Mark Met August 2017 Mar	-			anability inv	•	-	•		((73))			
Pump Contractor Dump MathemMedia E Society/SCH (2020 9 Stapp) Dump MathemMedia E Society/SCH (2020 9 Stapp) Difference (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2				n; R. Allwar	•	A the water									
Comments: Purple marks 2014 (1902) 140002 (4900 (2014)) Test Total Time (m): 146 Reference in the second colspan="4">Reference in the second colspan="4" Comments Time Total Time (m): 1446 Reference in the second colspan="4" Comments Discharing (m): Total Time (m): Total Time (m): Second (m): Second (m): Comments Discharing (m): Total Time (m): Total Time (m): Second (m): Second (m): Second (m): Comments Discharing (m): Total Time (m): Total Time (m): Total Time (m): Second (m): Comments Comments Total Time (m): Total Time (m): Total Time (m): Total Time (m): Second (m): Second (m): Comments Total Time (m): T		•				Pump N	C UTILITY DIS								
Time Water Level Discharge Press Sand "C PH EC Comments 3/24/2016 1:30:00 660 19:60 13:828 1100 100 124 22.86 Capacity 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.86 22.87 22.87 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.80 22.81 22	Comments: F	Pump mated to F	ranklin 20	Hp Motor #	2366149020	-					•		MF:		10
	Total Dis	scharge (galls):		162,870	Tot	al Time (min):	1445	Ra	ate (gpm):	113		page _	0	f	
DBME Time Truel/min Depth Dawdom Tuble k MF Depth Depth Eds grant EC gra							.					o			_
3292016 13.000 680 10.00 4.37 515200 100 124 22.86 3292016 23.000 750 19.70 4.38 515647 99 100 124 22.80 3292016 33.000 176 19.70 4.38 515161 99 100 124 22.73 3292016 43.000 4.61 9.71 4.38 515161 99 100 124 22.73 3292016 43.000 640 19.71 4.38 55062 99 100 124 22.71 3292016 53.000 000 174 4.38 520646 99 100 124 22.71 3292016 53.000 900 19.72 4.40 521424 100 124 22.66 3292016 73.000 1060 19.71 4.43 52132 97 100 124 22.66 3292016 73.000 1060 19.77 4.41 52131 100 124 22.69 3292016 73.000 1060	Date		Total(min)					0		Sand		T Ó	FC		Comments
3/292016 2.000 720 1969 4.37 51557 98 100 124 2.2.86 3/292016 3.3000 760 19.70 4.38 519161 99 100 124 2.2.80 3/292016 3.3000 760 19.70 4.38 519161 99 100 124 2.2.73 3/292016 5.3000 370 19.71 4.38 52062 99 100 124 2.2.71 3/292016 5.0000 300 19.71 4.38 52064 99 100 124 2.2.71 3/292016 5.0000 900 19.72 4.40 521642 99 100 124 2.2.66 3/292016 6.0000 1002 19.73 4.41 521642 99 100 124 2.2.66 3/292016 6.0000 1006 17.3 4.41 521632 100 124 2.2.			. ,							Ound	C	pri	20		
3292016 2.3.0.0 7.50 19.70 4.38 518864 99 100 124 1 2.2.80 3292016 3.0.00 780 19.70 4.38 519161 99 100 124 2.2.73 3292016 4.0.00 440 19.71 4.39 519756 99 100 124 2.2.73 3292016 5.0.00 500 19.71 4.39 520449 99 100 124 2.2.71 3292016 5.0.00 500 19.71 4.49 520449 100 124 2.2.66 2.2.71 3292016 6.0.00 500 19.72 4.40 52142 100 102 2.2.66 2.2.66 2.2.66 2.2.60 2.2.66 2.2.60 2.2.66 2.2.60 2.2.60 2.2.66 2.2.60 2.2.66 2.2.66 2.2.60 2.2.60 2.2.60 2.2.60 2.2.60 2.2.60 2.2.60 2.2.60 2.2.60 2.2.60 2.2.75 2.2.60 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
3/292016 3/00/00 7/80 19/70 4/38 5/9161 9/9 100 124 2 22/79 3/292016 3/3000 810 19/71 4/38 5/19459 99 100 124 2.2.73 3/292016 4/3000 870 19/71 4/38 520052 99 100 124 2.2.71 3/292016 5/3000 930 19/71 4/38 520349 99 100 124 2.2.71 3/292016 6/3000 930 19/72 4/40 520446 100 100 124 2.2.66 3/292016 6/3000 900 19/71 4/41 521424 100 100 124 2.2.66 3/292016 8/0000 10/80 19/71 4/41 52131 100 124 2.2.68 3/292016 8/0000 11/10 19/70 4/38 52273 96 100 124 2.2.73 3/292016 8/0000 11/10 </td <td></td>															
3/292016 33.000 810 19.71 4.39 519489 99 100 124 22.73 3/292016 4.0000 840 19.71 4.39 620052 99 100 124 22.73 3/292016 5.00.00 900 19.71 4.39 520052 99 100 124 22.71 3/292016 6.00.00 900 19.71 4.43 520445 100 104 22.66 3/292016 6.00.00 900 19.72 4.40 52144 100 100 124 22.66 3/292016 6.00.00 900 19.72 4.40 52142 100 124 22.66 3/292016 70.000 1000 144 521432 100 104 22.60 3/292016 80.000 1100 174 4.41 521432 100 104 22.60 3/292016 9.30.00 1140 19.70 4.38 522330 100 124 22.73 3/292016 9.40.00 1146 19.71 4.39 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
3/292016 4/0000 840 19.71 4.33 519756 99 100 124 22.73 3/292016 4/3000 870 119.71 4.39 520329 99 100 124 22.72 3/292016 5/3000 990 19.71 4.39 520349 99 100 124 22.71 3/292016 6/000 980 19.72 4.40 52045 100 100 124 22.66 3/292016 6/000 990 19.73 4.41 521424 100 100 124 22.66 3/292016 8/0000 1000 14.41 52131 100 102 22.26 3/292016 8/0000 1100 19.70 4.38 522303 102 100 124 22.73 3/292016 9/000 1140 19.70 4.38 52303 102 100 124 22.74 3/292016 9/300 1170 19.70 4.38															
329/2016 4:300 870 19.71 4:39 520052 99 100 124 22.72 329/2016 5:0000 900 19.71 4:33 520449 99 100 124 22.71 329/2016 6:0000 900 19.72 4:40 520446 100 100 124 22.66 329/2016 6:3000 980 19.72 4:40 52142 90 102 124 22.66 329/2016 7:0000 1050 19.71 4:33 52142 90 100 124 22.66 329/2016 8:0000 1080 19.73 4:41 52131 100 101 124 22.75 329/2016 8:0000 1108 19.70 4:38 52233 100 124 22.75 329/2016 9:3000 1170 19.70 4:38 52239 100 124 22.69 329/2016 9:400 1184 19.7 4:39															
3/29/2016 5:00:00 900 19.71 4.39 5:20:349 99 100 124 22.71 3/29/2016 6:30:00 900 19.71 4.39 5:20:44 00 102 124 22.71 3/29/2016 6:30:00 990 19.72 4.40 5:20:44 100 100 124 22.66 3/29/2016 6:30:00 1900 19.73 4.41 5:21:32 97 100 124 22.66 3/29/2016 8:0:00 1060 19.73 4.41 5:21:32 97 100 124 22.66 3/29/2016 8:0:00 1100 19.70 4.38 5:22:39 100 124 22.75 3/29/2016 9:0:00 1170 19.70 4.38 5:23:39 102 100 124 22.76 3/29/2016 9:4:400 1184 19.77 4.39 5:23:188 99 100 124 22.69 22.73 3/29/2016 9:4:400 1184 19.77 170 80 14.70 Opened valve 13.76															
3/29/2016 5.30:00 930 19,71 4.39 520846 99 100 124 22.71 3/29/2016 6:00:00 990 19,72 4.40 520945 100 100 124 22.66 3/29/2016 7:00:00 1020 19,73 4.41 521542 99 100 124 22.66 3/29/2016 7:00:00 1060 19.71 4.39 521332 97 100 124 22.66 3/29/2016 8:00:00 1110 19.70 4.38 52233 102 100 124 22.75 3/29/2016 9:00:00 1170 19.70 4.38 52273 96 100 124 22.74 3/29/2016 9:40:00 1170 19.70 4.38 52236 102 100 124 22.74 3/29/2016 9:40:00 1170 19.70 4.38 52376 100 100 124 22.74 3/29/2016 9:40:00 1180 22.45 7.13 52386 177 100 80 14.02															
3/29/2016 6.00.00 960 19.72 4.40 520945 100 100 124 22.66 3/29/2016 6.00.00 990 19.72 4.40 521942 99 100 124 22.66 3/29/2016 7.30.00 1050 19.71 4.39 521832 97 100 124 22.69 3/29/2016 8.00.00 1080 19.73 4.41 522131 100 100 124 22.75 3/29/2016 9.00.00 1110 19.70 4.38 522732 96 100 124 22.75 3/29/2016 9.40.00 1184 19.70 4.38 523166 100 124 22.76 3/29/2016 9.46.00 1184 127.1 4.39 523166 100 124 22.69 3/29/2016 9.46.00 1184 127.1 4.32 523367 178 100 80 14.02 3/29/2016 9.50.00 1190 22.45 7.26 523373 177 100 80 13.82 3/29/201															
3/29/2016 6:30:00 990 19.72 4.40 521244 100 100 124 22.66 3/29/2016 7:00:00 1000 19.73 4.41 521324 99 100 124 22.66 3/29/2016 8:00:00 1060 19.73 4.41 52133 100 102 22.68 3/29/2016 8:00:00 1110 19.70 4.38 52233 6100 124 22.75 3/29/2016 9:00:00 1140 19.70 4.38 52233 6100 124 22.74 3/29/2016 9:40:00 1184 19.71 4.38 52336 100 124 22.74 3/29/2016 9:40:00 1186 22.45 7.13 52336 177 100 80 14.70 Opened valve 3/29/2016 9:50:00 1190 22.45 7.21 523326 177 100 80 13.89 3/29/2016 10:00:00 1202 2.255 7.33 523478 177 101 80 13.74 3/29/2016															
3292016 7:00:00 1020 19:73 4.41 521642 99 100 124 22.60 3292016 8:00:00 1080 19:71 4.39 521832 97 100 124 22.69 3292016 8:00:00 1100 19:70 4.38 52213 100 102 22.75 3292016 9:00:00 1140 19:70 4.38 522233 96 100 124 22.75 3292016 9:30:00 1170 19:70 4.38 522330 102 100 124 22.74 3292016 9:44:00 1184 19:71 4.39 523166 99 100 124 22.69 3292016 9:46:00 1186 22.10 6.78 52319 140 100 80 114.70 Opened valve 3292016 9:56:00 1196 22.58 7.26 52337 177 100 80 113.82 329202016 9:56:00 1199 2.261 7.35 523475 177 101 80 13.75 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td></td> <td></td> <td></td> <td></td> <td></td>															
3/29/2016 7.30:00 1050 19.71 4.39 5/2182 97 100 1/24 22.69 3/29/2016 8:30:00 1110 19.73 4.41 5/22131 100 100 1/24 22.58 3/29/2016 8:30:00 1110 19.70 4.38 5/22330 102 100 1/24 22.73 3/29/2016 9:44:00 1184 19.70 4.38 5/22330 102 100 1/24 22.69 3/29/2016 9:44:00 1184 19.71 4.39 5/23169 140 100 80 14.70 Opened valve 3/29/2016 9:46:00 1186 22.10 6.78 5/23169 140 100 80 14.02 22.69 3/28/2016 9:50:00 1190 22.45 7.71 5/23320 177 100 80 13.89 13.89 3/28/2016 9:50:00 1199 22.61 7.29 5/2347 171 101 80 13.74 3/28/2016 10:02:00 1205 22.67 7.38 5/2365															
3/29/2016 8:00:00 1080 19:73 4.41 5/2131 100 100 124 2 3 2 <th2< th=""> 2 <th2< th=""></th2<></th2<>															
3/29/2016 8:30:00 1110 19.70 4.38 6:22436 100 124 22.75 3/29/2016 9:30:00 11170 19.70 4.38 5:22723 96 100 124 22.73 3/29/2016 9:30:00 11170 19.70 4.38 5:2330 102 100 124 22.74 3/29/2016 9:44:00 1184 19.71 4.39 5:23166 99 100 124 22.69 3/29/2016 9:50:00 1190 22.45 7.13 5:23267 178 100 80 114.02 3/29/2016 9:50:00 1191 22.55 7.26 5:23373 177 100 80 13.82 3/29/2016 9:50:00 1199 22.61 7.29 5:23425 173 101 80 13.74 3/29/2016 10:00:00 1205 22.67 7.35 5:23551 123 101 80 13.75 Reading error (? 3/29/2016 10:00:00 1205 22.70 7.38 5:23602 170 101 80							-								
3/29/2016 9:00:00 1140 19:70 4:38 622723 96 100 124 22.73 3/29/2016 9:30:00 1170 19:70 4:38 523030 102 100 124 22.74 3/29/2016 9:46:00 1184 19:71 4:39 523168 99 100 124 22.69 3/29/2016 9:50:00 1190 22.45 7.13 523267 178 100 80 114.02 3/29/2016 9:50:00 1199 22.45 7.21 523237 177 100 80 13.89 3/29/2016 9:50:00 1199 22.61 7.29 523425 173 101 80 13.79 3/29/2016 10:0:0:00 1202 22.65 7.33 523551 243 101 80 13.74 3/29/2016 10:0:0:00 1208 22.70 7.38 523652 177 101 80 13.76 3/29/2016 10:0:1:00 121 22.73 7.41 523655 177 101 80 13.75															
3/29/2016 9.30:00 1170 19.70 4.38 523030 102 100 124 22.74 3/29/2016 9.44:00 1184 19.71 4.39 523168 99 100 124 22.69 3/29/2016 9.46:00 1186 22.45 7.13 523267 178 100 80 14.70 Opened valve 3/29/2016 9.56:00 1193 22.45 7.21 523320 177 100 80 13.89 3/29/2016 9.56:00 1199 22.65 7.28 523373 177 100 80 13.79 3/29/2016 10.00:00 1202 22.65 7.33 523478 177 101 80 13.74 3/29/2016 10.00:00 1208 22.67 7.38 523602 170 101 80 13.75 Reading error (? 3/29/2016 10.01:00 1214 22.73 7.41 523650 177 101 80 13.75 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
3/29/2016 9:44:00 1184 19:71 4.39 523168 99 100 124 22.69 3/29/2016 9:46:00 1186 22.10 6.78 523196 140 100 80 14.70 Opened valve 3/29/2016 9:50:00 1190 22.45 7.13 523267 178 100 80 13.89 3/29/2016 9:50:00 1190 22.68 7.21 523320 177 100 80 13.82 3/29/2016 9:56:00 1199 22.61 7.29 523425 173 101 80 13.74 3/29/2016 10:00:00 1202 22.65 7.33 523478 177 101 80 13.75 3/29/2016 10:01:00 1201 22.70 7.38 523602 170 101 80 13.76 3/29/2016 10:01:00 1214 22.73 7.41 523655 177 101 80 13.71 3/29/2016															
3/29/2016 9:46:00 1186 22.10 6.78 523196 140 100 80 14.70 Opened valve 3/29/2016 9:50:00 1190 22.45 7.13 523267 178 100 80 14.02 3/29/2016 9:50:00 1193 22.53 7.21 523373 177 100 80 13.89 3/29/2016 9:56:00 1199 22.61 7.29 523425 173 101 80 13.79 3/29/2016 10:02:00 1202 22.65 7.33 523425 177 101 80 13.74 3/29/2016 10:05:00 1205 22.67 7.35 523551 243 101 80 13.72 3/29/2016 10:01:00 1212 22.73 7.41 523602 170 101 80 13.72 3/29/2016 10:1:00 1211 22.73 7.41 523790 155 102 80 13.57 3/29/2016	-														
3/29/2016 9:50:00 1190 22.45 7.13 523267 178 100 80 14.02 3/29/2016 9:53:00 1193 22.53 7.21 523320 177 100 80 13.89 3/29/2016 9:56:00 1196 22.56 7.26 523373 177 100 80 13.82 3/29/2016 9:59:00 1199 22.61 7.29 523425 173 101 80 13.79 3/29/2016 10:02:00 1202 22.66 7.35 523551 177 101 80 13.74 3/29/2016 10:08:00 1208 22.70 7.38 523602 170 101 80 13.75 3/29/2016 10:14:00 1211 22.73 7.41 523652 177 101 80 13.71 3/29/2016 10:14:00 1217 22.84 7.52 523910 153 102 80 13.57 3/29/2016 10:3:00															Opened velve
3/29/2016 9-53:00 1193 22.53 7.21 523320 177 100 80 13.89 3/29/2016 9-56:00 1196 22.58 7.26 523373 177 100 80 13.82 3/29/2016 9-59:00 1199 22.61 7.29 523425 173 101 80 13.79 3/29/2016 10:02:00 1202 22.65 7.33 523551 243 101 80 13.74 3/29/2016 10:06:00 1205 22.67 7.38 523652 177 101 80 13.77 3/29/2016 10:11:00 1211 22.73 7.41 523655 177 101 80 13.71 3/29/2016 10:14:00 1214 22.73 7.41 523655 102 80 13.59 18 time 3/29/2016 10:3:00 1233 22.87 7.55 524010 170 102 80 13.57 3/29/2016 10:3:00															Opened valve
3/29/2016 9:56:00 1196 22:58 7.26 523373 177 100 80 13.82 3/29/2016 9:59:00 1199 22:61 7.29 523425 173 101 80 13.79 3/29/2016 10:05:00 1202 22:65 7.33 523478 177 101 80 13.74 3/29/2016 10:05:00 1208 22:67 7.35 523502 177 101 80 13.75 Reading error (? 3/29/2016 10:05:00 1208 22.70 7.38 523602 177 101 80 13.72 3/29/2016 10:11:00 1211 22.73 7.41 523655 177 101 80 13.71 3/29/2016 10:27:00 1227 22.84 7.52 523910 155 102 80 13.57 3/29/2016 10:30:00 1233 22.87 7.55 524010 170 102 80 13.56 3/29/20															
3/29/2016 9:59:00 1199 22:61 7.29 523425 173 101 80 13.79 3/29/2016 10:02:00 1202 22:65 7.33 523478 177 101 80 13.74 3/29/2016 10:05:00 1205 22:67 7.35 523551 243 101 80 13.75 Reading error (? 3/29/2016 10:06:00 1208 22:70 7.38 523602 170 101 80 13.72 3/29/2016 10:14:00 1211 22:73 7.41 523655 177 101 80 13.71 3/29/2016 10:14:00 1214 22:73 7.41 523708 177 102 80 13.57 3/29/2016 10:2:700 1227 22:84 7.55 524010 170 102 80 13.57 3/29/2016 10:3:00 1233 22:87 7.55 524010 170 102 80 13.57 3/29/20	-														
3/29/2016 10:02:00 1202 22:65 7:33 523478 177 101 80 13.74 3/29/2016 10:05:00 1205 22:67 7:35 523551 243 101 80 13.75 Reading error (? 3/29/2016 10:08:00 1208 22:70 7:38 523655 177 101 80 13.72 3/29/2016 10:14:00 1211 22:73 7:41 523655 177 101 80 13.68 3/29/2016 10:14:00 1214 22:73 7:41 523655 177 101 80 13.71 3/29/2016 10:27:00 1227 22:84 7:52 523910 155 102 80 13.57 3/29/2016 10:3:00 1233 22:87 7:55 524010 170 102 80 13.56 3/29/2016 10:3:00 1236 22:89 7:57 524063 177 103 80 13.62 3/29/20															
3/29/2016 10:05:00 1205 22.67 7.35 523551 243 101 80 13.75 Reading error (? 3/29/2016 10:08:00 1208 22.70 7.38 523602 170 101 80 13.72 3/29/2016 10:11:00 1211 22.73 7.41 523655 177 101 80 13.78 Reading error (? 3/29/2016 10:14:00 1214 22.73 7.41 523708 177 102 80 13.71 13.68 3/29/2016 10:27:00 1227 22.84 7.52 523910 155 102 80 13.57 3/29/2016 10:30:00 1230 22.86 7.54 523959 163 102 80 13.57 3/29/2016 10:33:00 1232 22.87 7.55 524010 170 102 80 13.62 3/29/2016 10:36:00 1236 22.89 7.57 524187 177 103 80															
3/29/2016 10:08:00 1208 22.70 7.38 523602 170 101 80 13.72 3/29/2016 10:11:00 1211 22.73 7.41 523655 177 101 80 13.68 3/29/2016 10:14:00 1214 22.73 7.41 523708 177 102 80 13.71 3/29/2016 10:27:00 1227 22.84 7.52 523910 155 102 80 13.59 IB time 3/29/2016 10:30:00 1230 22.86 7.54 523959 163 102 80 13.57 3/29/2016 10:30:00 1238 22.87 7.55 524010 170 102 80 13.56 3/29/2016 10:36:00 1243 22.89 7.57 524063 177 103 80 13.62 3/29/2016 10:43:00 1267 22.90 7.58 52417 177 104 80 13.70 3/29/2016															Reading error (2)
3/29/2016 10:11:00 1211 22.73 7.41 523655 177 101 80 13.68 3/29/2016 10:14:00 1214 22.73 7.41 523708 177 102 80 13.71 3/29/2016 10:27:00 1227 22.84 7.52 523910 155 102 80 13.59 IB time 3/29/2016 10:30:00 1230 22.86 7.54 523959 163 102 80 13.57 3/29/2016 10:30:00 1233 22.87 7.55 524010 170 102 80 13.57 3/29/2016 10:36:00 1236 22.89 7.57 524063 177 103 80 13.62 3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 52417 177 104 80 13.77 3/29/2016															reduing crior (1)
3/29/2016 10:14:00 1214 22.73 7.41 523708 177 102 80 13.71 3/29/2016 10:27:00 1227 22.84 7.52 523910 155 102 80 13.59 IB time 3/29/2016 10:30:00 1230 22.86 7.54 523959 163 102 80 13.57 3/29/2016 10:30:00 1233 22.87 7.55 524010 170 102 80 13.57 3/29/2016 10:36:00 1236 22.89 7.57 524063 177 103 80 13.56 3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.62 3/29/2016 10:43:00 1267 22.90 7.58 52417 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.77 3/29/2016															
3/29/2016 10:27:00 1227 22.84 7.52 523910 155 102 80 13.59 IB time 3/29/2016 10:30:00 1230 22.86 7.54 523959 163 102 80 13.57 3/29/2016 10:33:00 1233 22.87 7.55 524010 170 102 80 13.57 3/29/2016 10:36:00 1236 22.89 7.57 524063 177 103 80 13.56 3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.62 3/29/2016 10:56:00 1266 22.90 7.58 524417 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.78 3/29/2016 11:10:00 1270 22.93 7.61 524663 173 105 80 13.77 3/29/2016 11:10:00 1280 22.96 7.64 524838 174 105 <t< td=""><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	-														
3/29/2016 10:30:00 1230 22.86 7.54 523959 163 102 80 13.57 3/29/2016 10:33:00 1233 22.87 7.55 524010 170 102 80 13.57 3/29/2016 10:36:00 1236 22.89 7.57 524063 177 103 80 13.56 3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.62 3/29/2016 10:56:00 1256 22.90 7.58 524117 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.70 3/29/2016 11:07:00 1270 22.93 7.61 524663 173 105 80 13.77 3/29/2016 11:1:000 1270 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:1:000 1280 22.96 7.64 524838 174 105 80 13.												1	1		IB time
3/29/2016 10:33:00 1233 22.87 7.55 524010 170 102 80 13.57 3/29/2016 10:36:00 1236 22.89 7.57 524063 177 103 80 13.56 3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.62 3/29/2016 10:56:00 1256 22.90 7.58 524117 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.78 3/29/2016 11:07:00 1270 22.93 7.61 52463 173 105 80 13.77 3/29/2016 11:13:00 1273 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.80 3/29/2016 11:30:00 1290 22.98 7.65 525190 176 106 80 13.8												1	1		
3/29/2016 10:36:00 1236 22.89 7.57 524063 177 103 80 13.56 3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.62 3/29/2016 10:56:00 1256 22.90 7.58 524117 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.78 3/29/2016 11:07:00 1267 22.90 7.58 52463 173 105 80 13.75 3/29/2016 11:10:00 1270 22.93 7.61 52463 173 105 80 13.75 3/29/2016 11:13:00 1273 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 52438 174 105 80 13.80 3/29/2016 11:30:00 1290 22.98 7.65 525190 176 106 80 13.89<												1	1		
3/29/2016 10:43:00 1243 22.89 7.57 524187 177 103 80 13.62 3/29/2016 10:56:00 1256 22.90 7.58 524417 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.78 3/29/2016 11:10:00 1270 22.93 7.61 524663 173 105 80 13.75 3/29/2016 11:13:00 1273 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.77 3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.												1	1		
3/29/2016 10:56:00 1256 22.90 7.58 524417 177 104 80 13.70 3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.78 3/29/2016 11:00 1270 22.93 7.61 524663 173 105 80 13.75 3/29/2016 11:13:00 1273 22.93 7.61 524663 177 105 80 13.77 3/29/2016 11:13:00 1273 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.77 3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96<													ł		
3/29/2016 11:07:00 1267 22.90 7.58 524611 176 104 80 13.78 3/29/2016 11:10:00 1270 22.93 7.61 524663 173 105 80 13.75 3/29/2016 11:13:00 1273 22.93 7.61 524766 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.77 3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 3/29/2016 11:30:00 1290 22.97 7.65 525190 176 106 80 13.80 3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 3/29/2016 12:05:00 1325 22.98 7.66 52564 185 108 80 14.0													ł		
3/29/2016 11:10:00 1270 22.93 7.61 524663 173 105 80 13.75 3/29/2016 11:13:00 1273 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.77 3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 3/29/2016 11:30:00 1290 22.97 7.65 525190 176 106 80 13.80 3/29/2016 11:50:00 1310 22.97 7.65 525190 176 106 80 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 3/29/2016 12:05:00 1325 22.98 7.66 52564 185 108 80 14.06 RA time												1	1		
3/29/2016 11:13:00 1273 22.93 7.61 524716 177 105 80 13.77 3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.77 3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 3/29/2016 11:50:00 1310 22.97 7.65 52564 185 108 80 14.06 RA time												1	1		
3/29/2016 11:20:00 1280 22.96 7.64 524838 174 105 80 13.77 3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 13.80 3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.80 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 13.96 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 13.96 3/29/2016 12:05:00 1325 22.98 7.66 52564 185 108 80 14.06 RA time												1	1		
3/29/2016 11:30:00 1290 22.98 7.66 525014 176 106 80 13.80 13.80 3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.80 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 3/29/2016 12:05:00 1325 22.98 7.66 525644 185 108 80 14.06 RA time												1	1		
3/29/2016 11:40:00 1300 22.97 7.65 525190 176 106 80 13.89 13.89 3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 13.96 3/29/2016 12:05:00 1325 22.98 7.66 52564 185 108 80 14.06 RA time												1	1		
3/29/2016 11:50:00 1310 22.97 7.65 525366 176 107 80 13.96 13.96 3/29/2016 12:05:00 1325 22.98 7.66 525644 185 108 80 14.06 RA time												1	1		
3/29/2016 12:05:00 1325 22:98 7.66 525644 185 108 80 114.06 RA time															
													1		
												1	1		
	5/23/2010	14.00.00	1440	22.07	1.20	J2700Z	100	113	00					10.00	

Aquifer Test Data - Recovery												
Project:	South Y Extrac	ction Well Suital	oility Inv.	Pumping Well: LBWC Well #4								
-	843 Hazel Driv		,		Pump On:	3/28/2016: 14:00	BUC UTILITY DISTRICT					
	I. Bergsohn; R				Pump Off:							
Pump Contractor:	Carson Pump	(Omar)		Pump N	/ake/Model:	Goulds/5CHC020	(8 Stage)					
Comments:					SWL=	15.46						
							of1					
		TIME			WATE	R LEVEL						
Date	Time	Time since Pump Start, t (min)	Time since Pump Stop, t'(min)	t/ť	Depth	Residual Drawdown, s'	Comments					
			. ,	01		Diawaowii, o						
3/29/2016	14:05	1445	0	4440.00	22.57	0.05	Pump OFF (Total = 527662 x 10)					
3/29/2016	14:06	1446	1	1446.00	17.51	2.05						
3/29/2016	14:07	1447	2	723.50	17.28	1.82						
3/29/2016	14:08	1448	3	482.67	17.11	1.65						
3/29/2016	14:09	1449	4	362.25	17.02	1.56						
3/29/2016	14:10	1450	5	290.00	16.95	1.49						
3/29/2016	14:11	1451	6	241.83 207.43	16.88	1.42						
3/29/2016	14:12	1452	7		16.83	1.37						
3/29/2016	14:13	1453	8	181.62	16.78	1.32						
3/29/2016	14:14	1454	9	161.56	16.73	1.27						
3/29/2016	14:15	1455	10	145.50	16.71	1.25						
3/29/2016	14:20	1460	15	97.33	16.58	1.12						
3/29/2016	14:25	1465	20	73.25	16.48	1.02						
3/29/2016	14:30	1470	25	58.80	16.41	0.95						
3/29/2016	14:35	1475	30	49.17	16.34	0.88						
3/29/2016	14:40	1480	35	42.29	16.29	0.83						
3/29/2016	14:45	1485	40	37.12	16.24	0.78						
3/29/2016	14:50	1490	45	33.11	16.20	0.74						
3/29/2016	14:55	1495	50	29.90	16.17	0.71						
3/29/2016	15:00	1500	55	27.27	16.13	0.67						
3/29/2016	15:05	1505	60	25.08	16.10	0.64						
3/29/2016	15:15	1515	70	21.64	16.05	0.59						
3/29/2016	15:25	1525	80	19.06	16.01	0.55						
3/29/2016	15:35	1535	90	17.06	15.98	0.52						
3/30/2016	8:25	2545	1100	2.31	15.52	0.06						

Appendix D: Aquifer Test Data and Graphs

Appendix D.1 – Theis Calibration and Calculation Sheets

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

Calibration for LBWC #4 from 24-hour Constant-Rate Data. Note: Last 4.25 hours of test, the flow rate was increased from about 100 gpm to 170 gpm. The average pumping rate for the entire 24-hour test was 113 gpm. The data from the well pumping 100 gpm was used (duration was 1,184 minute) for the Theis calibration. Aquifer thickness (b) for $TK_{z5} + TK_{z4}$ is 102 feet.

Answer :

Static Water Level =	15.46	feet
Drawdown =	4.36	feet
Pumping Water Level =	19.8	feet
u = 5.4237E-07		

Thickness (b)	102 ft
Flow (Q)	100 gpm
Flow (Q)	144000 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	0.82222222 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS

	<i>u</i> =	5.4237E-07	
IF u <= 1 THEN W(u) =		13.8501113	
IF u > 1 THEN W(u) =		124734.759	
<i>u</i> =		13.8501113	
DRAWDOWN IN OB. WELL =		4.36050209	4.362392456
TOTAL VOLUME PUMPED =		132.608	ac-ft/yr
		0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

Calibration check using storativity of 0.05, pumping rate of 170 gpm for entire 24-hour test.

Answer :

Static Water Level =	15.46 feet
Drawdown =	7.52 feet
Pumping Water Level =	23.0 feet
u = 4.4441E-07	

Thickness (b)	102 ft
Flow (Q)	170 gpm
Flow (Q)	244800 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	1.00347222 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS

	u = 4.4441E-07	
IF u <= 1 THEN W(u) =	14.049322	
IF u > 1 THEN W(u) =	152230.802	
<i>u</i> =	14.049322	
DRAWDOWN IN OB. WELL =	7.51947505	7.522734897
TOTAL VOLUME PUMPED =	275.128	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 200 gpm - 30 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	10.99 feet
Pumping Water Level =	26.4 feet
u = 1.4865E-08	

Thickness (b)	102	ft
Flow (Q)	200	gpm
Flow (Q)	288000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	30	days
Hydraulic Conductivity	47.7089231	ft/day

CALCULATIONS			
	<i>u</i> =	1.4865E-08	
IF u <= 1 THEN W(u) =		17.4470528	
IF u > 1 THEN W(u) =		4551070.9	
<i>u</i> =		17.4470528	
DRAWDOWN IN OB. WELL =		10.9858915	10.99065408
TOTAL VOLUME PUMPED =		9676.8	ac-ft/yr
		0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 200 gpm - 90 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	11.68 feet
Pumping Water Level =	27.1 feet
u = 4.955E-09	

Thickness (b)	102 ft
Flow (Q)	200 gpm
Flow (Q)	288000 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	90 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS		
	u = 4.955E-09	
IF u <= 1 THEN W(u) =	18.545665	
IF u > 1 THEN W(u) =	13653209.2	
<i>u</i> =	18.545665	
DRAWDOWN IN OB. WELL =	11.677655	11.68271753
TOTAL VOLUME PUMPED =	29030.4	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 200 gpm - 365 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	12.56 feet
Pumping Water Level =	28.0 feet
u = 1.2218E-09	

Thickness (b)	102 ft
Flow (Q)	200 gpm
Flow (Q)	288000 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	365 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS			
	<i>u</i> =	1.2218E-09	
IF u <= 1 THEN W(u) =		19.9457527	
<i>IF u > 1 THEN W(u) =</i>		55371343.1	
<i>u</i> =		19.9457527	
DRAWDOWN IN OB. WELL =		12.5592487	12.56469339
TOTAL VOLUME PUMPED =		117734.4	ac-ft/yr
		0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 400 gpm - 30 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	21.97 feet
Pumping Water Level =	37.4 feet
u = 1.4865E-08	

Thickness (b)	102	ft
Flow (Q)	400	gpm
Flow (Q)	576000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	30	days
Hydraulic Conductivity	47.7089231	ft/day

CALCULATIONS		
	u = 1.4865E-08	
IF u <= 1 THEN W(u) =	17.4470528	
<i>IF u > 1 THEN W(u) =</i>	4551070.9	
<i>u</i> =	17.4470528	
DRAWDOWN IN OB. WELL =	21.9717829	21.98130817
TOTAL VOLUME PUMPED =	19353.6	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 400 gpm - 90 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	23.36 feet
Pumping Water Level =	38.8 feet
u = 4.955E-09	

Thickness (b)	102 ft
Flow (Q)	400 gpm
Flow (Q)	576000 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	90 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS			
	<i>u</i> =	4.955E-09	
IF u <= 1 THEN W(u) =		18.545665	
<i>IF u > 1 THEN W(u) =</i>		13653209.2	
<i>u</i> =		18.545665	
DRAWDOWN IN OB. WELL =		23.35531	23.36543507
TOTAL VOLUME PUMPED =		58060.8	ac-ft/yr
	(0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 400 gpm - 365 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46	feet
Drawdown =	25.12	feet
Pumping Water Level =	40.6	feet
u = 1.2218E-09		

Thickness (b)	102	ft
Flow (Q)	400	gpm
Flow (Q)	576000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	365	days
Hydraulic Conductivity	47.7089231	ft/day

CALCULATIONS		
	u = 1.2218E-09	
IF u <= 1 THEN W(u) =	19.9457527	
<i>IF u > 1 THEN W(u) =</i>	55371343.1	
<i>U</i> =	19.9457527	
DRAWDOWN IN OB. WELL =	25.1184974	25.12938679
TOTAL VOLUME PUMPED =	235468.8	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 600 gpm - 30 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	32.96 feet
Pumping Water Level =	48.4 feet
u = 1.4865E-08	

Thickness (b)	102	ft
Flow (Q)	600	gpm
Flow (Q)	864000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	30	days
Hydraulic Conductivity	47.7089231	ft/day

CALCULATIONS		
	u = 1.4865E-08	
IF u <= 1 THEN W(u) =	17.4470528	
<i>IF u > 1 THEN W(u) =</i>	4551070.9	
<i>u</i> =	17.4470528	
DRAWDOWN IN OB. WELL =	32.9576744	32.97196225
TOTAL VOLUME PUMPED =	29030.4	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 600 gpm - 90 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	35.03 feet
Pumping Water Level =	50.5 feet
u = 4.955E-09	

Thickness (b)	102 ft
Flow (Q)	600 gpm
Flow (Q)	864000 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	90 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS		
	u = 4.955E-09	
IF u <= 1 THEN W(u) =	18.545665	
IF u > 1 THEN W(u) =	13653209.2	
<i>u</i> =	18.545665	
DRAWDOWN IN OB. WELL =	35.0329651	35.0481526
TOTAL VOLUME PUMPED =	87091.2	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 600 gpm - 365 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46	feet
Drawdown =	37.68	feet
Pumping Water Level =	53.1	feet
u = 1.2218E-09		

Thickness (b)	102	ft
Flow (Q)	600	gpm
Flow (Q)	864000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	365	days
Hydraulic Conductivity	47.7089231	ft/day

CALCULATIONS			
	<i>u</i> =	1.2218E-09	
IF u <= 1 THEN W(u) =		19.9457527	
<i>IF u > 1 THEN W(u) =</i>		55371343.1	
<i>u</i> =		19.9457527	
DRAWDOWN IN OB. WELL =		37.6777461	37.69408018
TOTAL VOLUME PUMPED =		353203.2	ac-ft/yr
		0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 800 gpm - 30 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	43.94 feet
Pumping Water Level =	59.4 feet
u = 1.4865E-08	

Thickness (b)	102	ft
Flow (Q)	800	gpm
Flow (Q)	1152000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	30	days
Hydraulic Conductivity	47.7089231	ft/day

CALCULATIONS		
	u = 1.4865E-08	
IF u <= 1 THEN W(u) =	17.4470528	
<i>IF u > 1 THEN W(u) =</i>	4551070.9	
<i>u</i> =	17.4470528	
DRAWDOWN IN OB. WELL =	43.9435659	43.96261634
TOTAL VOLUME PUMPED =	38707.2	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

LBWC #4 - 800 gpm - 90 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	46.71 feet
Pumping Water Level =	62.2 feet
u = 4.955E-09	

Thickness (b)	102	ft
Flow (Q)	800	gpm
Flow (Q)	1152000	
Transmissivity (T)	36,400	gpd/ft
Transmissivity (T)	4866.31016	ft^2/day
Radius	0.41666667	feet
Storativity	5.0.E-02	unitless
Time	90	days
Hydraulic Conductivity	47.7089231	ft/day

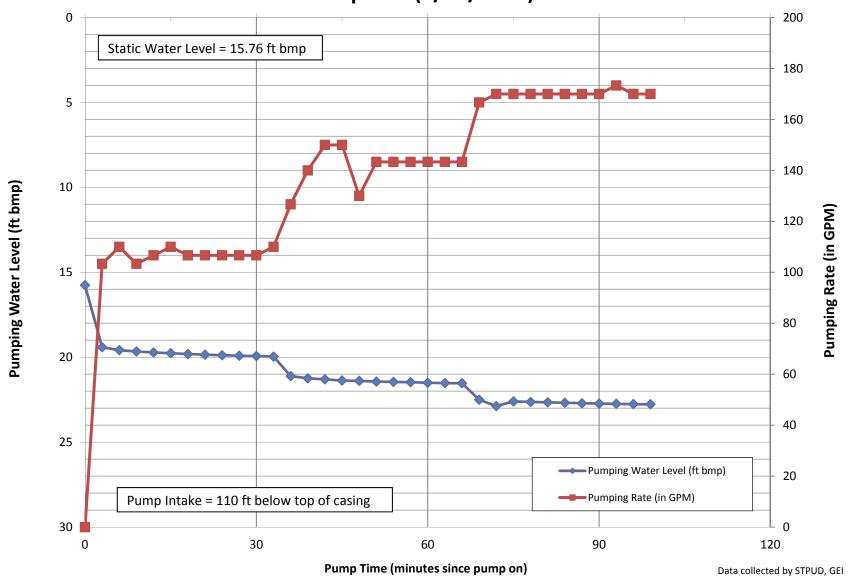
CALCULATIONS		
	u = 4.955E-09	
IF u <= 1 THEN W(u) =	18.545665	
<i>IF u > 1 THEN W(u) =</i>	13653209.2	
<i>u</i> =	18.545665	
DRAWDOWN IN OB. WELL =	46.7106201	46.73087014
TOTAL VOLUME PUMPED =	116121.6	ac-ft/yr
	0.00112022	conversion gal to ft & day to yr.

GEI Consultants, Inc.

By: Ryan Alward Date: 5-22-16

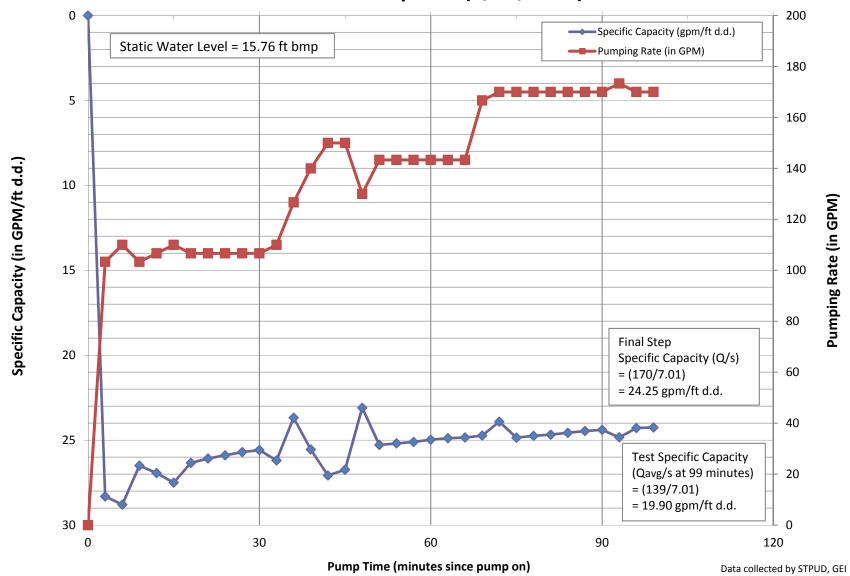
LBWC #4 - 800 gpm - 365 days pumping. *Note: Storativity was calibrated using constant-rate data from LBWC #4.*

Static Water Level =	15.46 feet
Drawdown =	50.24 feet
Pumping Water Level =	65.7 feet
u = 1.2218E-09	

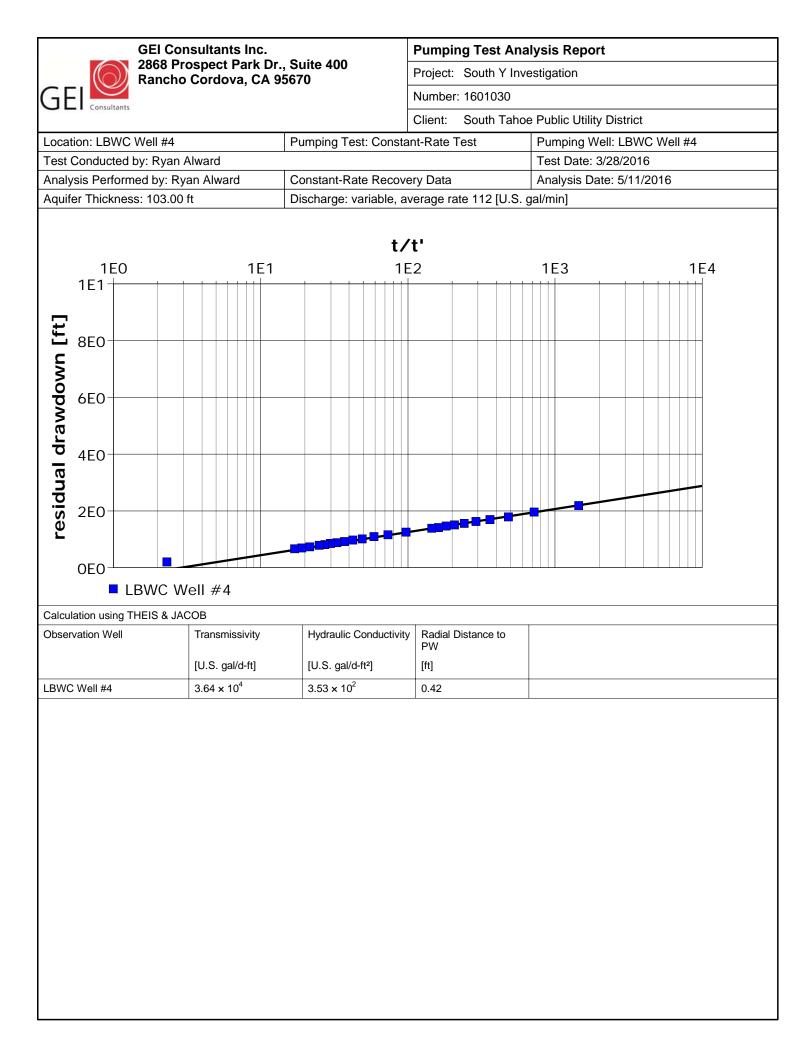

Thickness (b)	102 ft
Flow (Q)	800 gpm
Flow (Q)	1152000 gpd
Transmissivity (T)	36,400 gpd/ft
Transmissivity (T)	4866.31016 ft^2/day
Radius	0.41666667 feet
Storativity	5.0.E-02 unitless
Time	365 days
Hydraulic Conductivity	47.7089231 ft/day

CALCULATIONS			
	<i>u</i> =	1.2218E-09	
IF u <= 1 THEN W(u) =		19.9457527	
<i>IF u > 1 THEN W(u) =</i>		55371343.1	
<i>u</i> =		19.9457527	
DRAWDOWN IN OB. WELL =		50.2369948	50.25877358
TOTAL VOLUME PUMPED =		470937.6	ac-ft/yr
		0.00112022	conversion gal to ft & day to yr.

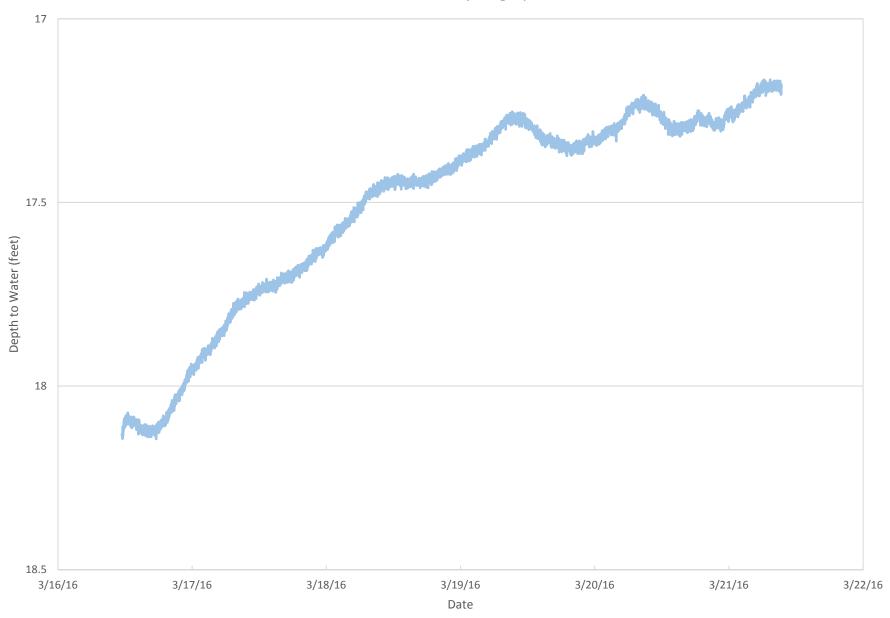
Appendix D.2 - Step-test Graphs



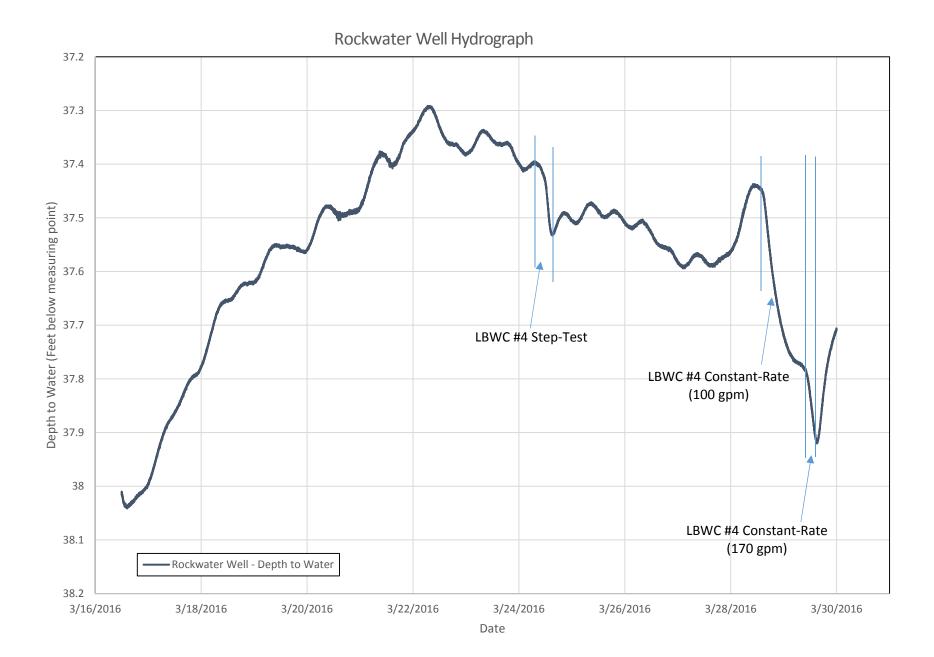
LBWC #4 Step Test (6/24/2016)



LBWC #4 Step Test (6/24/2016)

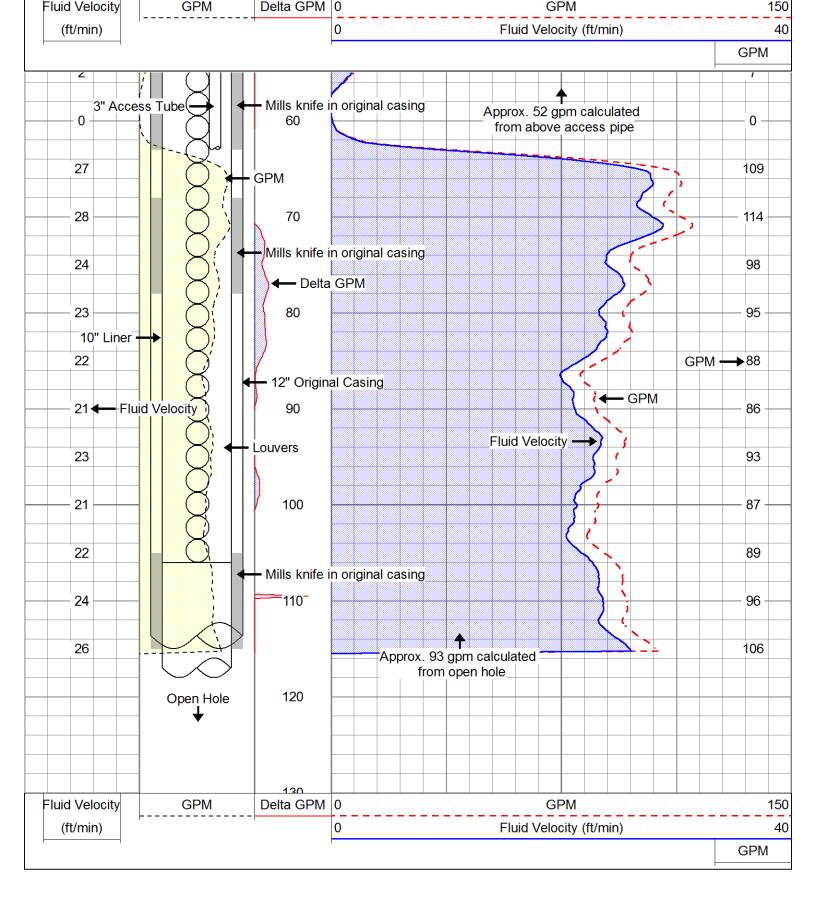


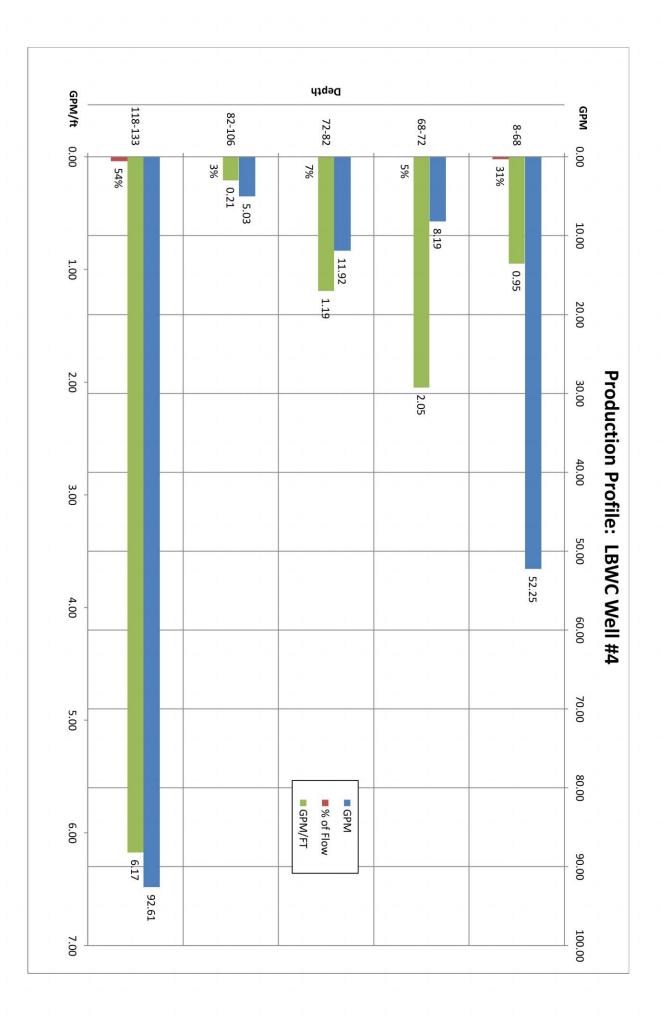
Appendix D.3 – Constant-rate Test Graph

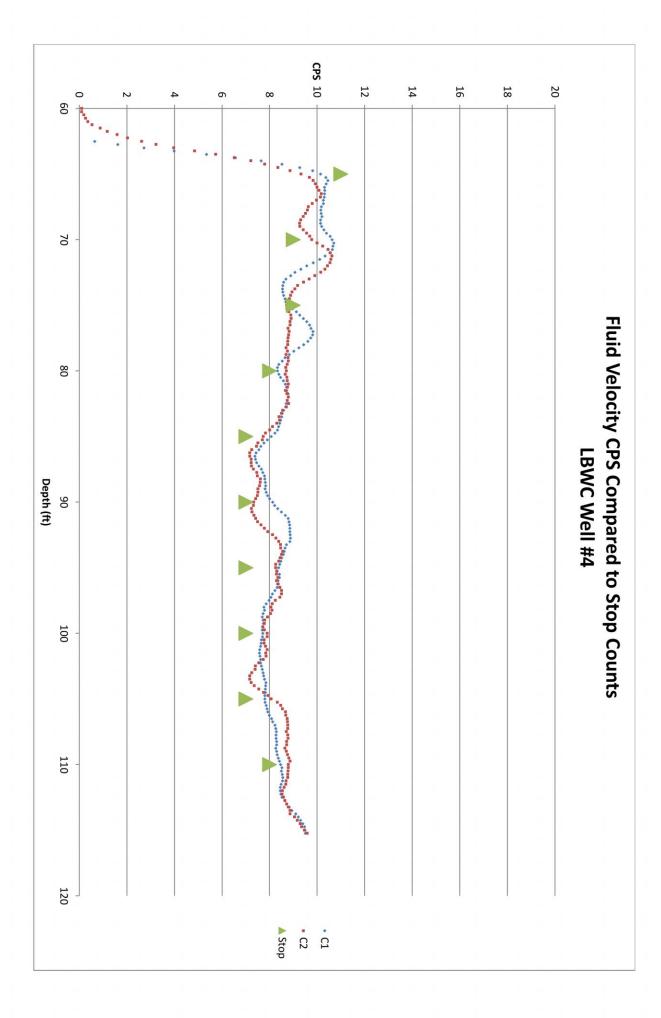


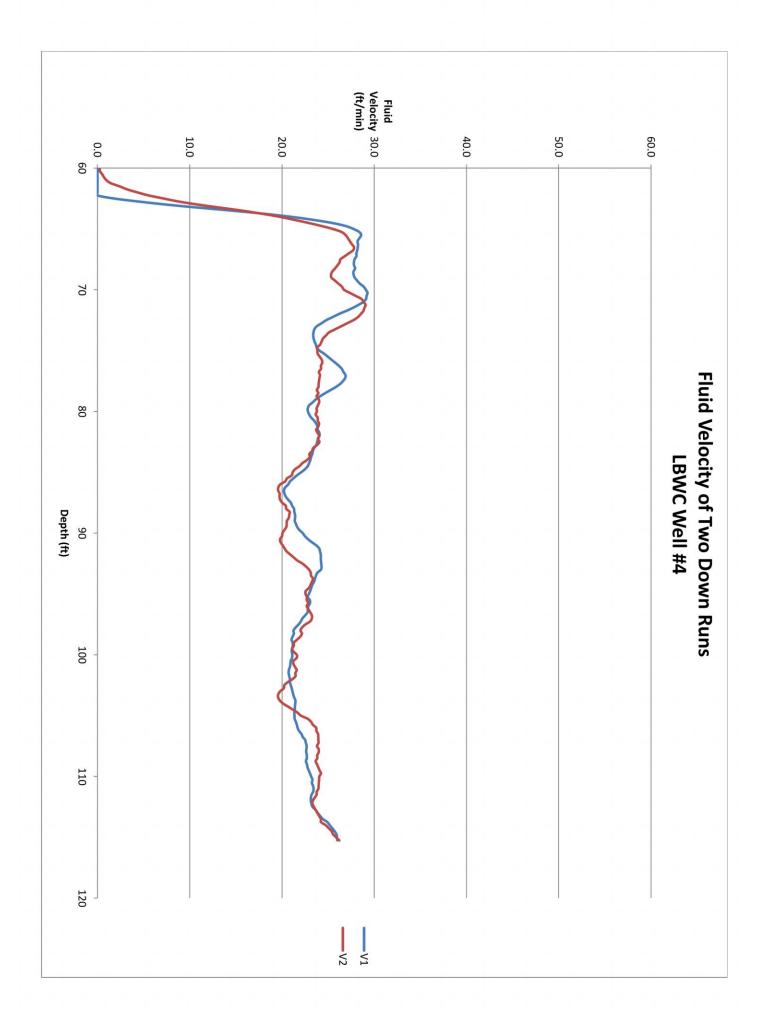
Appendix D.4 – LBWC #4 Well Transducer Data

LBWC Well #4 Hydrograph


Appendix D.5 – Rockwater Well Transducer Data


Appendix E: Spinner Log and Analysis


Production String Liner	Casing Record Surface String	Type S LOUVERS	Witnessed By	Recorded By	Location	Equipment Number	Time Vell Ready	Pump Rate (GPM)	Max. Recorded Temp.	Pumping Water Level	Pump Set @	Top Log Interval	Bottom Logged Interval	Depth Logger	Depth Driller	Run Number	Date	Drilling Measured From	Log Measured From	Permanent Datum	Sec.	843 HAZEL DR. GPS: N 38o 55.234' W 120o 0.507'	Location:	-					Job No. 21068				C)	
12"	Size	N/A 8') -		1		lotom lot		emp.	for to Survey			nterval					From	om	-	Twp.	234' W 120o 0.5i			County	Field	vvell		Company				- - •	, I E I C
		8'		SCHU	Þ	PS-7	0800	170	NA	7/2 HK	42	55	118'	N/A	133'	TWO	03-29-2016	N/A	T.O.C.	T.O.C.		07'			ELDO	SOUT			GEI C					
N/A N/A	Wgt/Ft	106'	R. ALWARD	SCHUMACHER													-2016				Rge.				ELDORADO	SOUTH LAKE TAHOE			GEI CONSULTANTS, INC	-	J ,	•		
		Туре																	above pe	Elevation					S	TAHOE	4	2	ANTS, IN				二 二 く	0
0,0	Тор	Slot Size From																	above perm. datum				Circ	Other	State C								ELLIN VELOCITY	
		From	J															G.L.		Ele		STOP COUNTS DOWN RUNS		Other Services	CA									J
? 118'	Bottom	То																		Elevation										2	2			
All interp correct	ness of an	>> are opinions y interpreta expenses in interpretati	tion icur	i, ai red	nd ۱ I or	ve sus	shal stair	l no ied l	t, ex by a	xcep anyc	ot ir one	n th res	e ca sulti	ase ing	e of frc	gr m	os an	s or y in	· wil iter	lful pret	negl tatior	igence n made	e on i e by :	our any	part y of o	, be li ur off	able icer:	e or s, a	respoi	nsible or emp	for ar	iy los	ss, cos	
																		ner	<u>nts</u>															
43 FT - 68 FT -	63 FT	SING REP	OR⁻	ΓΕΟ	DLY	' SC	CRE	ENE	ED۱	MT	ΗŅ	11LI	_S I	KN	IFE	FI	RC	DM:																
FLUID 8 68 FT 72 FT 82 FT 110 FT	SAMPLES	COLLECTE	ED #	ΑT:																														
Data	base File		210	068	3h	db																												
Datas	set Pathr	name	21(068		ldg	pm	I																										


Dataset Pathname21005_hdgpmPresentation FormatspinmergDataset CreationFri Apr 08 14:41:09 2016Charted byDepth in Feet scaled 1:120

PTINNER LOG ANALYSIS Pacific Surveys AX OW RATE 170.00 GPM Forditic Surveys SAMPLED PRODUCTION % OF FLOW THICKNESS 8-68 52.25 31% 0.95 55 68-72 8.19 5% 2.05 4 72-82 11.92 7% 1.19 10 82-106 5.03 3% 0.21 24 118-133 92.61 54% 6.17 15											고고	S	
170.00 GPM PRODUCTION % OF FLOW T 52.25 31% 0.95 8.19 5% 2.05 11.92 7% 1.19 5.03 3% 0.21 92.61 54% 6.17				118-133	82-106	72-82	68-72	8-68	DEPTHS	SAMPLED	MAX FLOW RATE	SPINNER LOG ANALYSIS	
FLOW % GPM/FT % 2.05 6.17 6.17				92.61	5.03	11.92	8.19	52.25	GPM	PRODUCTION	170.00		
				54%	3%	7%	5%	31%	ZONES		GPM		
Pacific Surveys THICKNESS ft 55 4 10 24 15				6.17	0.21	1.19	2.05	0.95	GPM/FT				
				15	24	10	4	55	ft	THICKNESS		Pacific Surveys	

Appendix F: Water Quality Results

Appendix F.1 – HydraSleeve (Static) Water Quality Sample Results

South Tahoe Public Utility District 1275 Meadow Crest Drive South Lake Tahoe, CA 96150	Lab ID Customer	: SP 1602476 : 2-11369
	Laboratory Report	

Introduction: This report package contains total of 19 pages divided into 3 sections:

ENVIRONMENTAL

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(10 pages) : Results for each sample submitted.
Quality Control	(7 pages) : Supporting Quality Control (QC) results.

Case Narrative

Analytical Chemists

AGRICULTURAL

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Travel Blank	03/03/2016	03/04/2016	SP 1602476-000	LBW
Well #4 @ 65 Feet	03/03/2016	03/04/2016	SP 1602476-001	DW
Well #4 @ 85 Feet	03/03/2016	03/04/2016	SP 1602476-002	DW
Well #4 @ 107 Feet	03/03/2016	03/04/2016	SP 1602476-003	DW
Rockwater Well @ 60 Feet	03/03/2016	03/04/2016	SP 1602476-004	DW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 6 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

	03/08/2016:203293 All analysis quality controls are within established criteria, except:
	The following note applies to 1,2-Dichlorobenzene-d4, 1,3-Dichlorobenzene, 1,4-Dichlorobenzene,
524.2	Bromomethane (Methyl Bromide), Hexachlorobutadiene:
524.2	360 CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.
	The following note applies to 1,2-Dichlorobenzene-d4:
	362 Surrogates are qualified on Control Chart Limits, these are CCV limits. See individual sample reports.
	03/08/2016:202713 All preparation quality controls are within established criteria, except:
	The following note applies to 1,2-Dichlorobenzene-d4:
	435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.
	The following note applies to 1,1-Dichloropropene, 1,2,3-Trichlorobenzene, Xylenes m,p, Xylenes o, p-
	Isopropyltoluene, Toluene:
	435 Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

				1 age 1 01 17
Corporate Offices & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory	Office & Laboratory
853 Corporation Street	2500 Stagecoach Road	563 E. Lindo Avenue	3442 Empresa Drive, Suite D	9415 W. Goshen Avenue
Santa Paula, CA 93060	Stockton, CA 95215	Chico, CA 95926	San Luis Obispo, CA 93401	Visalia, CA 93291
TEL: (805)392-2000	TEL: (209)942-0182	TEL: (530)343-5818	TEL: (805)783-2940	TEL: (559)734-9473
Env FAX: (805)525-4172 / Ag FAX: (805)392-2063	FAX: (209)942-0423	FAX: (530)343-3807	FAX: (805)783-2912	FAX: (559)734-8435
CA ELAP Certification No. 1573	CA ELAP Certification No. 1563	CA ELAP Certification No. 2670	CA ELAP Certification No. 2775	CA ELAP Certification No. 2810

Page 1 of 10

March 8, 2016	Lab ID	: SP 1602476
South Tahoe Public Utility District	Customer	: 2-11369

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:VT

Approved By David Terz, B.A., M.B.A.

Digitally signed by David Terz, B.A., M.B.A. Title: QA Director Date: 2016-03-08

Description

Project

South Tahoe Public Utility District

: Travel Blank

: Travel Blank

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1602476-000 Customer ID : 2-11369

Sampled On : March 3, 2016-00:00 : LOD Sampled By Received On : March 4, 2016-11:00 Matrix : Lab. Blank Water

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Sample Analysis		
	Result	TQL	Onits	Note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
4-Bromofluorobenzene [‡]	86.8	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichlorobenzene-d4 [‡]	105	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293	
Benzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromodichloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromoform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
n-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
sec-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
tert-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Carbon Tetrachloride	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
tert-Butanol	ND	2	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chloroform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
2-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
4-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dibromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dibromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,1-Dichloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
cis-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,3-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dichloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
2,2-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,1-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 3 of 19

March 8, 2016 Description : Travel Blank

Lab ID : SP 1602476-000 Customer ID : 2-11369

		Sam	ple Result	- Org	anic			
Constituent	Result PQL Units Note S		Sample	Preparation	Sample Analysis			
	Kesun	IQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Ethyl Benzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Hexachlorobutadiene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Isopropylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
p-Isopropyltoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Naphthalene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
n-Propylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Styrene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Tetrachloroethylene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Toluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Trichloroethylene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Trichlorofluoromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,3,5-Trimethylbenzene	ND	0.5	ug/L ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Vinyl Chloride	ND	0.5	ug/L ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes (Total)	ND		ug/L ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes (10tar) Xylenes m,p	ND	0.5	ug/L ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes o	ND	0.5	ug/L ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
	ND	0.5			524.2 524.2	03/08/16:202713	524.2 524.2	03/08/16:203293
Total Trihalomethanes			ug/L					

\mathbf{n} a 14 D

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1602476-001 Customer ID : 2-11369

Sampled On : March 3, 2016-08:53 : LOD Sampled By Received On : March 4, 2016-11:00 Matrix : Drinking Water

Description	: Well #4 @ 65 Feet
Project	: South Y-PCE- Luckins

Sample Result - Organic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	Result	I QL	Onto	MCL/ML	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	87.2	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichlorobenzene-d4 [‡]	98.9	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293
Benzene	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293
Bromobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromodichloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromoform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
n-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
sec-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
tert-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Carbon Tetrachloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
tert-Butanol	ND	2	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chlorobenzene	ND	0.5	ug/L	70	524.2	03/08/16:202713	524.2	03/08/16:203293
Chloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chloroform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
2-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
4-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dibromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dibromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichlorobenzene	ND	0.5	ug/L	600	524.2	03/08/16:202713	524.2	03/08/16:203293
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,4-Dichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichloroethane	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293
cis-1,2-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293
trans-1,2-Dichloroethylene	ND	0.5	ug/L	10	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichloropropane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,3-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dichloromethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
2,2-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 5 of 19

March 8, 2016 Description : Well #4 @ 65 Feet

Lab ID : SP 1602476-001 Customer ID : 2-11369

ConstituentResultEPA 524.2VOA:1'31,3-Dichloropropene (Total) cis-1,3-Dichloropropene trans-1,3-Dichloropropene Di-isopropyl ether (DIPE)NDDi-isopropyl ether (DIPE)NDEthyl BenzeneNDEthyl tert-Butyl Ether (ETBE)NDHexachlorobutadieneNDJopropylbenzene (ETBE)NDP-IsopropyltolueneNDMethyl tert-Butyl Ether (MTBE)NDNaphthalene n-PropylbenzeneNDStyrene (TAME)ND1,1,2.2-Tetrachloroethane TetrachloroethyleneND1,2,3-Trichlorobenzene NDND1,2,4-TrichlorobenzeneND	PQL 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	Units ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	MCL/AL 0.5 0.5 300	Sample Method 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	e Preparation Date/ID 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	Samp Method 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	le Analysis Date/ID 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293
EPA 524.2I,3-Dichloropropene (Total)cis-1,3-Dichloropropenetrans-1,3-DichloropropeneDi-isopropyl ether (DIPE)Di-isopropyl ether (DIPE)Ethyl BenzeneNDEthyl tert-Butyl Ether(ETBE)HexachlorobutadieneNDJopropylbenzeneP-IsopropyltolueneMethyl tert-Butyl Ether(MTBE)Naphthalenen-PropylbenzeneNDStyreneTert-amyl-methyl Ether(TAME)1,1,2-TetrachloroethaneNDTetrachloroethaneNDTetrachloroethaneND1,1,2,3-TrichlorobenzeneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 0.5 300	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293
1,3-Dichloropropene (Total) cis-1,3-Dichloropropene trans-1,3-DichloropropeneNDDi-isopropyl ether (DIPE)NDEthyl BenzeneNDEthyl tert-Butyl Ether (ETBE)NDHexachlorobutadieneNDIsopropylbenzene p-IsopropyltolueneNDMethyl tert-Butyl Ether (MTBE)NDNaphthalene n-PropylbenzeneNDStyreneNDTert-amyl-methyl Ether (TAME)ND1,1,2-Tetrachloroethane 1,1,2,2-TetrachloroethaneND1,2,3-TrichlorobenzeneND1,2,3-TrichlorobenzeneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 300	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293
cis-1,3-Dichloropropene trans-1,3-DichloropropeneNDDi-isopropyl ether (DIPE)NDEthyl BenzeneNDEthyl tert-Butyl Ether (ETBE)NDHexachlorobutadieneNDIsopropylbenzene p-IsopropyltolueneNDMethyl tert-Butyl Ether (MTBE)NDNaphthalene n-PropylbenzeneNDStyreneNDTert-amyl-methyl Ether (TAME)ND1,1,2-Tetrachloroethane 1,1,2,2-TetrachloroethaneND1,2,3-TrichlorobenzeneND1,2,3-TrichlorobenzeneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 0.5 300	524.2 524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293
trans-1,3-DichloropropeneNDDi-isopropyl ether (DIPE)NDEthyl BenzeneNDEthyl tert-Butyl EtherND(ETBE)NDHexachlorobutadieneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDrert-amyl-methyl EtherND(TAME)ND1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	0.5 300	524.2 524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2 524.2 524.2 524.2	03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293
Di-isopropyl ether (DIPE)NDEthyl BenzeneNDEthyl tert-Butyl EtherND(ETBE)NDHexachlorobutadieneNDIsopropylbenzeneNDp-IsopropylbenzeneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDrert-amyl-methyl EtherND(TAME)ND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	300	524.2 524.2 524.2 524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2 524.2 524.2	03/08/16:203293 03/08/16:203293 03/08/16:203293 03/08/16:203293
Ethyl BenzeneNDEthyl tert-Butyl EtherND(ETBE)NDHexachlorobutadieneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L ug/L		524.2 524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2 524.2	03/08/16:203293 03/08/16:203293 03/08/16:203293
Ethyl BenzeneNDEthyl tert-Butyl EtherND(ETBE)NDHexachlorobutadieneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND1,1,2,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L ug/L		524.2 524.2 524.2	03/08/16:202713 03/08/16:202713 03/08/16:202713	524.2 524.2	03/08/16:203293 03/08/16:203293
Ethyl tert-Butyl EtherND(ETBE)HexachlorobutadieneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.2 0.5	ug/L ug/L ug/L ug/L ug/L	12	524.2 524.2	03/08/16:202713 03/08/16:202713	524.2	03/08/16:203293
HexachlorobutadieneNDIsopropylbenzeneNDp-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND(TAME)ND1,1,2-TetrachloroethaneNDTetrachloroethaneNDTetrachloroethaneND1,1,2,3-TrichlorobenzeneND	0.5 0.5 0.2 0.5	ug/L ug/L ug/L	12	524.2	03/08/16:202713		
IsopropylbenzeneNDp-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND(TAME)ND1,1,2.7 EtrachloroethaneNDTetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5 0.5 0.2 0.5	ug/L ug/L ug/L	12			524.2	
p-IsopropyltolueneNDMethyl tert-Butyl EtherND(MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND(TAME)ND1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.2 0.5	ug/L ug/L	12	524.2	02/08/16-202712		03/08/16:203293
Methyl tert-Butyl Ether (MTBE)NDNaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl Ether (TAME)ND1,1,2-TetrachloroethaneND1,1,2.7-tetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.2 0.5	ug/L	12		03/08/16:202713	524.2	03/08/16:203293
NaphthaleneNDn-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND(TAME)ND1,1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND		_	15	524.2	03/08/16:202713	524.2	03/08/16:203293
n-PropylbenzeneNDStyreneNDTert-amyl-methyl EtherND(TAME)ND1,1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND		ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
StyreneNDTert-amyl-methyl EtherND(TAME)ND1,1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Tert-amyl-methyl EtherND(TAME)ND1,1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5	ug/L	100	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,1,2-TetrachloroethaneND1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2,2-TetrachloroethaneNDTetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Tetrachloroethylene8.6TolueneND1,2,3-TrichlorobenzeneND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293
TolueneND1,2,3-TrichlorobenzeneND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,3-Trichlorobenzene ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293
	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,1-Trichloroethane ND	0.5	ug/L	200	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2-Trichloroethane ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Trichloroethylene ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Trichlorofluoromethane ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293
1 1 2		-					
Trichlorotrifluoroethane ND	0.5	ug/L	1200	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,4-Trimethylbenzene ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,3,5-Trimethylbenzene ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Vinyl Chloride ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes (Total) ND		ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes m,p ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes o ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293
Total Trihalomethanes ND		ug/L	80	524.2	03/08/16:202713	524.2	03/08/16:203293

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$\$urrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1602476-002 Customer ID : 2-11369

Sampled On : March 3, 2016-08:53 : LOD Sampled By Received On : March 4, 2016-11:00 Matrix : Drinking Water

Description	: Well #4 @ 85 Feet
Project	: South Y-PCE- Luckins

Sample Result - Organic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	Result	ТQL	Onto	MCL/ML	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	90.3	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichlorobenzene-d4 [‡]	95.0	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293
Benzene	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293
Bromobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromodichloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromoform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
n-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
sec-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
tert-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Carbon Tetrachloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
tert-Butanol	ND	2	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chlorobenzene	ND	0.5	ug/L	70	524.2	03/08/16:202713	524.2	03/08/16:203293
Chloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chloroform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
2-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
4-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dibromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dibromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichlorobenzene	ND	0.5	ug/L	600	524.2	03/08/16:202713	524.2	03/08/16:203293
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,4-Dichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichloroethane	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293
cis-1,2-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293
trans-1,2-Dichloroethylene	ND	0.5	ug/L	10	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichloropropane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,3-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dichloromethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
2,2-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 7 of 19

March 8, 2016 Description : Well #4 @ 85 Feet

Lab ID : SP 1602476-002 Customer ID : 2-11369

Sample Result - Organic												
Constituent	Result	PQL	Units	MCL/AL	Sample	e Preparation	Sample Analysis					
	Kesun	FQL	Units	MCL/AL	Method	Date/ID	Method	Date/ID				
EPA 524.2 ^{VOA:1'3}												
1,3-Dichloropropene (Total)	ND		ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293				
cis-1,3-Dichloropropene	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293				
trans-1,3-Dichloropropene	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293				
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
Ethyl Benzene	ND	0.5	ug/L	300	524.2	03/08/16:202713	524.2	03/08/16:203293				
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
Hexachlorobutadiene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
Isopropylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
p-Isopropyltoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L	13	524.2	03/08/16:202713	524.2	03/08/16:203293				
Naphthalene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
n-Propylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
Styrene	ND	0.5	ug/L	100	524.2	03/08/16:202713	524.2	03/08/16:203293				
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293				
Tetrachloroethylene	34	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293				
Toluene	ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293				
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
1,2,4-Trichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293				
1,1,1-Trichloroethane	ND	0.5	ug/L	200	524.2	03/08/16:202713	524.2	03/08/16:203293				
1,1,2-Trichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293				
Trichloroethylene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293				
Trichlorofluoromethane 1,1,2-	ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293				
Trichlorotrifluoroethane	ND	0.5	ug/L	1200	524.2	03/08/16:202713	524.2	03/08/16:203293				
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293				
Vinyl Chloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293				
Xylenes (Total)	ND		ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293				
Xylenes m,p	ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293				
Xylenes o	ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293				
Total Trihalomethanes	ND		ug/L	80	524.2	03/08/16:202713	524.2	03/08/16:203293				

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1602476-003 Customer ID : 2-11369

Sampled On : March 3, 2016-09:30 : LOD Sampled By Received On : March 4, 2016-11:00 Matrix : Drinking Water

Description	: Well #4 @ 107 Feet
Project	: South Y-PCE- Luckins

Sample Result - Organic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Samp	le Analysis
	Result	IQL	Onits	WICL/AL	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	92.3	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichlorobenzene-d4 [‡]	96.1	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293
Benzene	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293
Bromobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromodichloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromoform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Bromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
n-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
sec-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
tert-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Carbon Tetrachloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
tert-Butanol	ND	2	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chlorobenzene	ND	0.5	ug/L	70	524.2	03/08/16:202713	524.2	03/08/16:203293
Chloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chloroform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Chloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
2-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
4-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dibromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dibromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichlorobenzene	ND	0.5	ug/L	600	524.2	03/08/16:202713	524.2	03/08/16:203293
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,4-Dichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichloroethane	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293
cis-1,2-Dichloroethylene	0.7	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293
trans-1,2-Dichloroethylene	ND	0.5	ug/L	10	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2-Dichloropropane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,3-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Dichloromethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
2,2-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 9 of 19

March 8, 2016 Description : Well #4 @ 107 Feet

Lab ID : SP 1602476-003 Customer ID : 2-11369

Sample Result - Organic											
Constituent	Result	PQL	Units	MCL/AL	Sampl	e Preparation	Sample Analysis				
	Result	FQL	Units	MCL/AL	Method	Date/ID	Method	Date/ID			
EPA 524.2 ^{VOA:1'3}											
1,3-Dichloropropene (Total)	ND		ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293			
cis-1,3-Dichloropropene	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293			
trans-1,3-Dichloropropene	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293			
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
Ethyl Benzene	ND	0.5	ug/L	300	524.2	03/08/16:202713	524.2	03/08/16:203293			
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
Hexachlorobutadiene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
Isopropylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
p-Isopropyltoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L	13	524.2	03/08/16:202713	524.2	03/08/16:203293			
Naphthalene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
n-Propylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
Styrene	ND	0.5	ug/L	100	524.2	03/08/16:202713	524.2	03/08/16:203293			
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L	100	524.2	03/08/16:202713	524.2	03/08/16:203293			
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293			
Tetrachloroethylene	39	2.5*	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293			
Toluene	ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293			
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
1,2,4-Trichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293			
1,1,1-Trichloroethane	ND	0.5	ug/L	200	524.2	03/08/16:202713	524.2	03/08/16:203293			
1,1,2-Trichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293			
Trichloroethylene	0.9	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293			
Trichlorofluoromethane	ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293			
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L	1200	524.2	03/08/16:202713	524.2	03/08/16:203293			
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293			
Vinyl Chloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293			
Xylenes (Total)	ND		ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293			
Xylenes m,p	ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293			
Xylenes o	ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293			
Total Trihalomethanes	ND		ug/L	80	524.2	03/08/16:202713	524.2	03/08/16:203293			

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1602476-004 Customer ID : 2-11369

Sampled On : March 3, 2016-09:57 : LOD Sampled By Received On : March 4, 2016-11:00 Matrix : Drinking Water

Description	: Rockwater Well @ 60 Feet
Project	: South Y-PCE- Luckins

Sample Result - Organic

Constituent	Result	PQL	Units	MCL/AL	Sample	Preparation	Sample Analysis		
	Result	TQL	Onits	MCL/AL	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
4-Bromofluorobenzene [‡]	93.9	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichlorobenzene-d4 [‡]	95.9	70-130	%		524.2	03/08/16:202713	524.2	03/08/16:203293	
Benzene	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromodichloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromoform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Bromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
n-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
sec-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
tert-Butylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Carbon Tetrachloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293	
tert-Butanol	ND	2	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chlorobenzene	ND	0.5	ug/L	70	524.2	03/08/16:202713	524.2	03/08/16:203293	
Chloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chloroform	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Chloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
2-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
4-Chlorotoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dibromochloromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dibromomethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichlorobenzene	ND	0.5	ug/L	600	524.2	03/08/16:202713	524.2	03/08/16:203293	
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,4-Dichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293	
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,1-Dichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichloroethane	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293	
1,1-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293	
cis-1,2-Dichloroethylene	ND	0.5	ug/L	6	524.2	03/08/16:202713	524.2	03/08/16:203293	
trans-1,2-Dichloroethylene	ND	0.5	ug/L	10	524.2	03/08/16:202713	524.2	03/08/16:203293	
1,2-Dichloropropane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293	
1,3-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
Dichloromethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293	
2,2-Dichloropropane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	
1,1-Dichloropropene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 11 of 19

March 8, 2016 Description : Rockwater Well @ 60 Feet

Lab ID : SP 1602476-004 Customer ID : 2-11369

Constituent	Decult	DOI	Unita		Sample	Preparation	Samp	le Analysis
Constituent	Result	PQL	Units	MCL/AL	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
cis-1,3-Dichloropropene	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
trans-1,3-Dichloropropene	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Ethyl Benzene	ND	0.5	ug/L	300	524.2	03/08/16:202713	524.2	03/08/16:203293
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Hexachlorobutadiene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Isopropylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
p-Isopropyltoluene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L	13	524.2	03/08/16:202713	524.2	03/08/16:203293
Naphthalene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
n-Propylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Styrene	ND	0.5	ug/L	100	524.2	03/08/16:202713	524.2	03/08/16:203293
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L	1	524.2	03/08/16:202713	524.2	03/08/16:203293
Tetrachloroethylene	69	5*	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Toluene	ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,2,4-Trichlorobenzene	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,1-Trichloroethane	ND	0.5	ug/L	200	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2-Trichloroethane	ND	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Trichloroethylene	1.1	0.5	ug/L	5	524.2	03/08/16:202713	524.2	03/08/16:203293
Trichlorofluoromethane	ND	0.5	ug/L	150	524.2	03/08/16:202713	524.2	03/08/16:203293
1,1,2-	ND	0.5	ug/L	1200	524.2	03/08/16:202713	524.2	03/08/16:203293
Trichlorotrifluoroethane			-	1200	524.2	03/00/10.202713	521.2	05/00/10.205275
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	03/08/16:202713	524.2	03/08/16:203293
Vinyl Chloride	ND	0.5	ug/L	0.5	524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes (Total)	ND		ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes m,p	ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293
Xylenes o	ND	0.5	ug/L	1750	524.2	03/08/16:202713	524.2	03/08/16:203293
Total Trihalomethanes	ND		ug/L	80	524.2	03/08/16:202713	524.2	03/08/16:203293

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution. MCL = Maximum Contamination Level. 2 - Secondary Standard. 3 - CDPH Notification Level. AL = Regulatory Action Level.

Lab ID Customer : SP 1602476 : 2-11369

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,1,1,2-Tetrachloroethane	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	85.2 %	12-178	
		(SP 1602429-001)	MSD	ug/L	10.00	95.9 %	12-178	
			MSRPD	ug/L	10.00	11.9%	≤39	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	114 %	70-130	
1,1,1-Trichloroethane(TCA)	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND	< 0.5	
		(SP 1602429-001)	MS MSD	ug/L	10.00 10.00	69.1 % 82.8 %	9-176 9-176	
		(SP 1002429-001)	MSD MSRPD	ug/L ug/L	10.00	82.8 % 18.0%	9-176 ≤33	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	94.1 %	70-130	
1 1 2 2-Tetrachloroethane	524.2		Blank	ug/L ug/L	10.00	ND	<0.5	
1,1,2,2 Tetraemoroeunane	521.2	05/00/10.202/15 (100	MS	ug/L	10.00	73.2 %	23-180	
		(SP 1602429-001)	MSD	ug/L	10.00	89.3 %	23-180	
		, , , , , , , , , , , , , , , , , , ,	MSRPD	ug/L	10.00	19.8%	≤34	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	98.9 %	70-130	
1,1,2-Trichloroethane	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	68.2 %	25-173	
		(SP 1602429-001)	MSD	ug/L	10.00	76.9 %	25-173	
	504.0		MSRPD	ug/L	10.00	12.0%	≤29	
1.1.10.11	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	95.1 %	70-130	
1,1-Dichloroethane	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND 56.3 %	<0.5	
		(SP 1602429-001)	MS MSD	ug/L ug/L	10.00 10.00	56.3 % 66.7 %	15-161 15-161	
		(31 1002429-001)	MSRPD		10.00	17.0%		
	524.2	03/08/16·203293VRG		,			$ \begin{array}{r} 15-161 \\ \leq 36 \\ \hline 70-130 \\ <0.5 \\ 0-162 \\ 0-162 \\ \end{array} $	
1.1-Dichloroethylene				,	10.00			
r,r-Diemoroeuryiene	02.112	00,00,10,202,10,110	MS		10.00	41.3 %		
		(SP 1602429-001)	MSD	ug/L	10.00	38.2 %	0-162	
			MSRPD	ug/L	10.00	7.7%	≤33	
	524.2	03/08/16:203293VRG		ug/L	10.00	93.1 %	70-130	
1,1-Dichloropropene	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	< 0.5						
		(CD 1 (02 (20 001)					0-171	
		(SP 1602429-001)		ug/L			0-171	125
I-Dichloroethane I-Dichloroethylene I-Dichloropropene 2,3-Trichlorobenzene	524.2	03/08/16:203293VRG	MSRPD CCV	ug/L	10.00 10.00	50.1% 82.4 %	≤31 70-130	435
1.2.3 Trichlorobonzono	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	82.4 % ND	<0.5	
1,2,3-IIIciliolobelizelle	524.2	03/08/10.202/13 VKO	MS	ug/L ug/L	10.00	68.1 %	14-181	
1,1,2-Tetrachloroethane 1,1-Trichloroethane(TCA) 1,2,2-Tetrachloroethane 1,2-Trichloroethane 1-Dichloroethane 1-Dichloroethylene 1-Dichloropropene 2,3-Trichlorobenzene		(SP 1602429-001)	MSD	ug/L	10.00	126 %	14-181	
		(22 2002 22 000)	MSRPD	ug/L	10.00	59.4%	≤34	435
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	150 %	70-130	360
1,2,4-Trichlorobenzene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	94.7 %	10-180	
		(SP 1602429-001)	MSD	ug/L	10.00	123 %	10-180	
			MSRPD	ug/L	10.00	26.1%	≤32	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	147 %	70-130	360
1,2,4-Trimethylbenzene	524.2	03/08/16:202713VRG		ug/L	10.00	ND	< 0.5	
		(SP 1602429-001)	MS MSD	ug/L	10.00 10.00	76.5 % 63.3 %	2-192 2-192	
		(SF 1002429-001)	MSD MSRPD	ug/L ug/L	10.00	03.3 % 18.9%	2-192 ≤39	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	105 %	<u>≥39</u> 70-130	
1.2-Dichlorobenzene	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	ND	<0.5	
	524.2	05/00/10.202/15 v KU	MS	ug/L ug/L	10.00	91.5 %	13-191	
		(SP 1602429-001)	MSD	ug/L	10.00	113 %	13-191	
		,	MSRPD	ug/L	10.00	20.6%	≤35	
	524.2	03/08/16:203293VRG		ug/L	10.00	132 %	70-130	360

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 13 of 19

: SP 1602476 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,2-Dichlorobenzene-d4	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	103 %	70-130	
y			MS	ug/L	10.00	123 %	70-130	
		(SP 1602429-001)	MSD	ug/L	10.00	132 %	70-130	435
			MSRPD	ug/L	10.00	7.1%	≤20	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	135 %	70-130	362
1,2-Dichloroethane (EDC)	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	57.7 %	18-162	
		(SP 1602429-001)	MSD	ug/L	10.00	64.9 %	18-162	
	524.2	02/09/16:202202340C	MSRPD CCV	ug/L	10.00	11.8%	≤33	
1.2 Dishlarana ana	524.2	03/08/16:203293VRG		ug/L	10.00	82.5 %	70-130	
1,2-Dichloropropane	524.2	03/08/16:202713VRG	Blank MS	ug/L	10.00	ND 63.6 %	<0.5 10-163	
		(SP 1602429-001)	MSD	ug/L ug/L	10.00	03.0 % 71.2 %	10-163	
		(51 100242)-001)	MSRPD	ug/L ug/L	10.00	11.3%	≤34	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	85.7 %	70-130	
1,3,5-Trimethylbenzene	524.2	03/08/16:202713VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
	527.2	05/00/10.202/15 (KO	MS	ug/L ug/L	10.00	2.9 %	0-210	
		(SP 1602429-001)	MSD	ug/L	10.00	2.4 %	0-210	
		``´´	MSRPD	ug/L	10.00	0.055	≤0.5	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	106 %	70-130	
1,3-Dichlorobenzene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	88.2 %	17-182	
		(SP 1602429-001)	MSD	ug/L	10.00	111 %	17-182	
			MSRPD	ug/L	10.00	23.1%	≤39	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	133 %	70-130	360
1,3-Dichloropropane	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	70.1 %	0-178	
		(SP 1602429-001)	MSD	ug/L	10.00	81.8 %	0-178	
		00/00/4 < 000000XTD G	MSRPD	ug/L	10.00	15.3%	≤29	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	97.9 %	70-130	
1,4-Dichlorobenzene	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND	<0.5	
		(SP 1602429-001)	MS MSD	ug/L	10.00 10.00	88.5 % 113 %	19-183 19-183	
		(SP 1002429-001)	MSD	ug/L ug/L	10.00	23.9%	19-185 ≤37	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	136 %	70-130	360
2.2 Dichloropropage	524.2	03/08/16:202713VRG	Blank	ug/L ug/L	10.00	ND	<0.5	300
2,2-Diemotopropane	524.2	03/08/10.202713 VKO	MS	ug/L ug/L	10.00	62.6 %	0-288	
,3-Dichloropropane ,4-Dichlorobenzene ,2-Dichloropropane		(SP 1602429-001)	MSD	ug/L	10.00	73.8 %	0-288	
		(,	MSRPD	ug/L	10.00	16.5%	≤33	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	85.7 %	70-130	
2-Chlorotoluene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	79.9 %	17-180	
		(SP 1602429-001)	MSD	ug/L	10.00	115 %	17-180	
			MSRPD	ug/L	10.00	35.7%	≤38	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	100 %	70-130	
4-Bromofluorobenzene	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	90.1 %	70-130	
			MS	ug/L	10.00	102 %	70-130	
		(SP 1602429-001)	MSD	ug/L	10.00	108 %	70-130	
		02/00/14 6 00000000000000000000000000000000000	MSRPD	ug/L	10.00	5.9%	≤30	
4-Bromofluorobenzene (BFB)	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	105 %	70-130	
4-Chlorotoluene	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND	<0.5	
		(SD 1602420 001)	MS MSD	ug/L	10.00	66.2 %	11-177	
		(SP 1602429-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	91.4 % 32.0%	11-177 ≤41	
			MISKPD	ug/L	10.00	32.0%	<u>_</u> 41	

: SP 1602476 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
4-Chlorotoluene	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	100 %	70-130	
Benzene	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.7 %	12-158	
		(SP 1602429-001)	MSD MSRPD	ug/L	10.00 10.00	73.0 %	12-158 ≤36	
	524.2	03/08/16:203293VRG		ug/L ug/L	10.00	13.6% 90.8 %	<u>≥30</u> 70-130	
Bromobenzene	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	90.8 %	<0.5	
Bromobenzene	324.2	05/06/10.202/15 VKO	MS	ug/L ug/L	10.00	90.4 %	23-177	
		(SP 1602429-001)	MSD	ug/L	10.00	112 %	23-177	
		(,	MSRPD	ug/L	10.00	21.8%	≤40	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	125 %	70-130	
Bromochloromethane	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	75.2 %	4-186	
		(SP 1602429-001)	MSD	ug/L	10.00	83.8 %	4-186	
	524.2	02/00/14 < 2022021/17 C	MSRPD	ug/L	10.00	10.9%	<u>≤30</u>	
D 11.1.1	524.2	03/08/16:203293VRG		ug/L	10.00	106 %	70-130	
Bromodichloromethane	524.2	03/08/16:202713VRG	Blank MS	ug/L	10.00	ND 55.0 %	<0.5 11-164	
		(SP 1602429-001)	MSD	ug/L ug/L	10.00	55.0 % 65.7 %	11-164	
		(51 100242)-001)	MSRPD	ug/L ug/L	10.00	11.2%	≤34	
	524.2	03/08/16:203293VRG		ug/L	10.00	82.9 %	70-130	
Bromoform	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	120 %	0-235	
		(SP 1602429-001)	MSD	ug/L	10.00	150 %	0-235	
			MSRPD	ug/L	10.00	12.6%	≤39	
	524.2	03/08/16:203293VRG		ug/L	10.00	119 %	70-130	
Bromomethane (Methyl Bromide)	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
		(CD 1 (02 (20 001)	MS	ug/L	10.00	100 %	0-196	
		(SP 1602429-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	122 % 19.5%	0-196 ≤40	
	524.2	03/08/16:203293VRG		ug/L ug/L	10.00	132 %	70-130	360
Carbon Tetrachloride	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	ND	<0.5	500
	524.2	05/00/10.202715 VIC	MS	ug/L ug/L	10.00	71.1 %	5-175	
Bromodichloromethane Bromoform Bromomethane (Methyl Bromide) Carbon Tetrachloride Chlorobenzene Chlorobenzene Chloroethane (Ethyl Chloride)		(SP 1602429-001)	MSD	ug/L	10.00	87.1 %	5-175	
		(,	MSRPD	ug/L	10.00	20.2%	≤32	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	98.1 %	70-130	
Chlorobenzene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	80.3 %	14-175	
Bromoform Bromomethane (Methyl Bromide) Carbon Tetrachloride		(SP 1602429-001)	MSD	ug/L	10.00	93.7 %	14-175	
	524.2	02/00/16 2022023400	MSRPD	ug/L	10.00	15.4%	<u>≤35</u>	
	524.2	03/08/16:203293VRG		ug/L	10.00	107 %	70-130	
Chioroethane (Ethyl Chioride)	524.2	03/08/16:202713VRG	MS	ug/L ug/L	10.00	ND 81.3 %	<0.5 0-184	
		(SP 1602429-001)	MSD	ug/L ug/L	10.00	95.5 %	0-184	
		(51 100242)-001)	MSRPD	ug/L ug/L	10.00	16.0%	≤40	
	524.2	03/08/16:203293VRG		ug/L	10.00	102 %	70-130	
Chloroform	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	59.1 %	15-163	
		(SP 1602429-001)	MSD	ug/L	10.00	70.2 %	15-163	
			MSRPD	ug/L	10.00	14.9%	≤36	
	524.2	03/08/16:203293VRG		ug/L	10.00	84.7 %	70-130	
Chloromethane(Methyl Chloride)	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
		(CD 1 (00 100 000)	MS	ug/L	10.00	124 %	0-224	
		(SP 1602429-001)	MSD	ug/L	10.00	141 %	0-224	

: SP 1602476 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Chloromethane(Methyl Chloride)	524.2	03/08/16:202713VRG	MSRPD	ug/L	10.00	12.6%	≤39	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	117 %	70-130	
cis-1,2-Dichloroethylene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	76.6 %	16-172	
		(SP 1602429-001)	MSD MSDDD	ug/L	10.00	88.7 %	16-172	
	524.2	03/08/16:203293VRG	MSRPD CCV	ug/L ug/L	10.00 10.00	14.6% 96.9 %	≤34 70-130	
cis-1,3-Dichloropropene	524.2	03/08/16:203293VRG	Blank	ug/L ug/L	10.00	96.9 % ND	<0.5	
ers-1,3-Diemotopropene	524.2	03/08/10.202713 VKO	MS	ug/L ug/L	10.00	59.4 %	5-158	
		(SP 1602429-001)	MSD	ug/L	10.00	50.7 %	5-158	
		, , , , , , , , , , , , , , , , , , ,	MSRPD	ug/L	10.00	15.8%	≤38	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	95.0 %	70-130	
Dibromochloromethane	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	90.0 %	1-180	
		(SP 1602429-001)	MSD MSRPD	ug/L	10.00 10.00	101 %	1-180 ≤34	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	5.7% 114 %	≥34 70-130	
Dibromomethane	524.2	03/08/16:202713VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
Dibiomomethane	524.2	03/08/10.202/13 VKO	MS	ug/L ug/L	10.00	63.9 %	<0.5 11-168	
		(SP 1602429-001)	MSD	ug/L	10.00	73.4 %	11-168	
		(22 2002 22 002)	MSRPD	ug/L	10.00	13.9%	≤28	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	90.9 %	70-130	
Dichlorodifluoromethane	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	56.2 %	0-334	
		(SP 1602429-001)	MSD	ug/L	10.00	81.0 %	0-334	
	524.2	02/00/16 2022021/07	MSRPD	ug/L	10.00	36.1%	≤39	
D'11 4	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	82.1 %	70-130	
Dichloromethane	524.2	03/08/16:202713VRG	Blank MS	ug/L ug/L	10.00	ND 63.6 %	<0.5 20-157	
		(SP 1602429-001)	MSD	ug/L ug/L	10.00	72.8 %	20-157	
		(51 1002 129 001)	MSRPD	ug/L	10.00	13.5%	≤36 ²	
Ethyl tert-Butyl Ether	524.2	03/08/16:202713VRG	Blank	ug/L		ND	<3	
5			MS	ug/L	10.00	66.9 %	11-165	
		(SP 1602429-001)	MSD	ug/L	10.00	76.6 %	11-165	
			MSRPD	ug/L	10.00	0.98	≤3	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	97.4 %	70-130	
Ethylbenzene	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND	<0.5 9-174	
		(SP 1602429-001)	MS MSD	ug/L ug/L	10.00 10.00	50.3 % 37.1 %	9-174 9-174	
		(51 1002427-001)	MSRPD	ug/L ug/L	10.00	30.3%	9-174 ≤37	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	96.3 %	70-130	
Freon-11	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	99.3 %	0-232	
		(SP 1602429-001)	MSD	ug/L	10.00	124 %	0-232	
	ļ	 	MSRPD	ug/L	10.00	21.9%	≤35	
Hexachlorobutadiene	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND	< 0.5	
		(SD 1602420 001)	MS	ug/L	10.00	112 %	14-200	
		(SP 1602429-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	142 % 24.0%	14-200 ≤40	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	24.0% 159 %	<u>≤40</u> 70-130	360
Isopropyl Ether	524.2	03/08/16:202713VRG	Blank	ug/L ug/L	10.00	139 % ND	<3	500
isopropyi Euler	524.2	05/00/10.202/15 vKO	MS	ug/L ug/L	10.00	61.9 %	8-165	
		(SP 1602429-001)	MSD	ug/L	10.00	71.3 %	8-165	
	1		MSRPD	ug/L	10.00	0.94	≤3	

Lab ID : SP 1602476 Customer : 2-11369 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Isopropyl Ether	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	90.9 %	70-130	
Isopropylbenzene	524.2	03/08/16:202713VRG		ug/L	10.00	ND	<0.5	
	02.112	00,00,101202,10,110	MS	ug/L	10.00	58.2 %	4-159	
		(SP 1602429-001)	MSD	ug/L	10.00	50.9 %	4-159	
			MSRPD	ug/L	10.00	13.5%	≤37	
	524.2	03/08/16:203293VRG		ug/L	10.00	106 %	70-130	
Methyl tert-Butyl Ether	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	112 %	70-130	
Methyl tert-Butyl Ether (MTBE)	524.2	03/08/16:202713VRG	Blank	ug/L		ND	<1.0	
			MS	ug/L	10.00	74.9 %	11-168	
		(SP 1602429-001)	MSD MSRPD	ug/L	10.00 10.00	84.5 % 12.1%	11-168	
Methylene Chloride	524.2	03/08/16:203293VRG	CCV	ug/L			≤29 70-130	
	524.2 524.2	03/08/16:202713VRG	Blank	ug/L	10.00	97.3 % ND	<0.5	
Naphthalene	524.2	05/08/10:202/15 vKG	MS	ug/L ug/L	10.00	3.9 %	<0.5 0-189	
		(SP 1602429-001)	MSD	ug/L ug/L	10.00	1.6 %	0-189	
		(81 1002 12) 001)	MSRPD	ug/L	10.00	0.24	≤0.5	
	524.2	03/08/16:203293VRG		ug/L	10.00	124 %	70-130	
n-Butylbenzene	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
5			MS	ug/L	10.00	47.7 %	4-186	
		(SP 1602429-001)	MSD	ug/L	10.00	35.9 %	4-186	
			MSRPD	ug/L	10.00	28.3%	≤37	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	105 %	70-130	
n-Propylbenzene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	50.6 %	0-174	
		(SP 1602429-001)	MSD MSRPD	ug/L	10.00 10.00	39.6 % 24.3%	0-174	
	524.2	03/08/16:203293VRG		ug/L ug/L	10.00	24.3% 96.4 %	≤37 70-130	
p-Isopropyltoluene	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	90.4 % ND	<0.5	
p-isopropynoluene	524.2	05/08/10.202715 VKO	MS	ug/L ug/L	10.00	26.4 %	0-193	
		(SP 1602429-001)	MSD	ug/L	10.00	12.3 %	0-193	
		(MSRPD	ug/L	10.00	1.4	≤0.5	435
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	118 %	70-130	
sec-Butylbenzene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
-			MS	ug/L	10.00	61.3 %	0-177	
		(SP 1602429-001)	MSD	ug/L	10.00	50.7 %	0-177	
			MSRPD	ug/L	10.00	18.9%	<u>≤</u> 40	
~	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	117 %	70-130	
Styrene	524.2	03/08/16:202713VRG	Blank	ug/L	10.00	ND	<0.5	
		(SP 1602429-001)	MS MSD	ug/L ug/L	10.00 10.00	1.1 % 0.8 %	0-198 0-198	
		(SF 1002429-001)	MSD MSRPD	ug/L ug/L	10.00	0.8 % 0.034	0-198 ≤0.5	
	524.2	03/08/16:203293VRG	CCV	ug/L ug/L	10.00	108 %	70-130	
ТАМЕ	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	ND	<3	
	524.2	05/00/10.202/15 (RO	MS	ug/L ug/L	10.00	71.5 %	15-162	
		(SP 1602429-001)	MSD	ug/L	10.00	82.2 %	15-162	
			MSRPD	ug/L	10.00	1.1	≤3	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	105 %	70-130	
tert-Butanol	524.2	03/08/16:202713VRG		ug/L		ND	<2	
			MS	ug/L	50.00	76.8 %	0-198	
		(SP 1602429-001)	MSD	ug/L	50.00	80.5 %	0-198	
	504.0	02/00/16-002002100	MSRPD	ug/L	10.00	4.8%	<u>≤39</u>	
()) (II	524.2	03/08/16:203293VRG		ug/L	50.00	102 %	70-130	
tert-Butylbenzene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	

: SP 1602476 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
tert-Butylbenzene	524.2	(SP 1602429-001)	MSD	ug/L	10.00	72.3 %	9-179	
		(MSRPD	ug/L	10.00	2.7%	≤38	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	113 %	30-130	
Tetrachloroethylene (PCE)	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	86.1 %	14-186	
		(SP 1602429-001)	MSD	ug/L	10.00	103 %	14-186	
			MSRPD	ug/L	10.00	17.8%	≤33	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	123 %	70-130	
Toluene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	50.2 %	3-174	
		(SP 1602429-001)	MSD	ug/L	10.00	33.9 %	3-174	
			MSRPD	ug/L	10.00	38.6%	≤37	435
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	100 %	30-130	
rans-1,2-Dichloroethylene	524.2	03/08/16:202713VRG	Blank	ug/L		ND	< 0.5	
•			MS	ug/L	10.00	54.9 %	5-165	
		(SP 1602429-001)	MSD	ug/L	10.00	64.5 %	5-165	
			MSRPD	ug/L	10.00	16.0%	≤40	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	95.4 %	70-130	
rans-1,3-Dichloropropene	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	55.3 %	0-169	
		(SP 1602429-001)	MSD	ug/L	10.00	47.3 %	0-169	
		, , , , , , , , , , , , , , , , , , ,	MSRPD	ug/L	10.00	15.6%	≤31	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	94.6 %	70-130	
Trichloroethylene (TCE)	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	67.3 %	11-167	
		(SP 1602429-001)	MSD	ug/L	10.00	84.1 %	11-167	
			MSRPD	ug/L	10.00	22.2%	≤35	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	95.5 %	70-130	
Frichlorofluoromethane F-11	524.2	03/08/16:203293VRG		ug/L	10.00	126 %	70-130	
Frichlorotrifluoroethane F-113	524.2	03/08/16:202713VRG		ug/L		ND	< 0.5	
	521.2	05/00/10.202715 (100	MS	ug/L	10.00	55.4 %	0-183	
		(SP 1602429-001)	MSD	ug/L	10.00	65.8 %	0-183	
		(51 1002 129 001)	MSRPD	ug/L	10.00	17.1%	≤33	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	92.7 %	70-130	
/inyl Chloride	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	ND	<0.5	
ingremoride	524.2	05/00/10.202715 410	MS	ug/L ug/L	10.00	17.6 %	0-208	
		(SP 1602429-001)	MSD	ug/L	10.00	15.7 %	0-208	
		(51 1002 129 001)	MSRPD	ug/L	10.00	0.19	≤0.5	
	524.2	03/08/16:203293VRG	CCV	ug/L	10.00	106 %	30-130	
Kylenes m,p	524.2	03/08/16:202713VRG		ug/L ug/L	10.00	ND	<0.5	
cjienes nip	524.2	55/00/10.202715 VKU	MS	ug/L ug/L	20.00	9.5 %	0-193	
		(SP 1602429-001)	MSD	ug/L ug/L	20.00	4.6 %	0-193	
		(51 1002+29 001)	MSRPD	ug/L ug/L	10.00	0.98	≤0.5	435
	524.2	03/08/16:203293VRG	CCV	ug/L	20.00	109 %	70-130	
Cylenes o	524.2	03/08/16:202713VRG		ug/L ug/L	20.00	ND	<0.5	
1,10105.0	524.2	55/00/10.202715 VKU	MS	ug/L ug/L	10.00	23.3 %	0-188	
		(SP 1602429-001)	MSD	ug/L ug/L	10.00	12.6 %	0-188	
		(51 100272)-001)	MSRPD	ug/L ug/L	10.00	12.0 %	≤0.5	435
	524.2	03/08/16:203293VRG		ug/L ug/L	10.00	110 %	70-130	755
	524.2	03/00/10.203293 VKU		ug/L	10.00	110 70	70-150	
Definition	11		- 41 1 - 4					
		ation - Analyzed to verif					-1	
Blank : Method Blank	- Prepared to ve	erify that the preparation	process 1s no	t contributing	g contaminat	ion to the sam	pies.	+ 1
		ple is spiked with a know	vii amount o	anaryte. The	e recoveries a	are an indicatio	n of now the	u samp
matrix affects ar	iaryte recovery.							

Quality Control - Organic

March 8, 2016	
South Tahoe Public Utility District	

Definition	
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.
ND	: Non-detect - Result was below the DQO listed for the analyte.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
360	: CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.
362	: Surrogates are qualified on Control Chart Limits, these are CCV limits. See individual sample reports.
435	: Sample matrix may be affecting this analyte. Data was accepted based on the LCS or CCV recovery.

SOUTH TAHOE PUBLIC UTILITY DISTRICT

16024710

CHAIN OF CUSTODY

South Tahoe Public L 1275 Meadow Crest I South Lake Tahoe, C Phone: (530)-543-623	Drive A 96150	Lab Sent to: Sampler:	FC	<u>sL</u>		EPA		Analyse	is Requ	ested			Turnaround Time Standard
FAX: (530)-541-429	Project South Y-PLE-Lukins Bample She	Date	ample Inf	ormation Preserve	Matrix	524.2						# of Containers	24 Hr 48 Hr Other Remarks
AL50061		03-03-16		Hel	Dul	И						3	
AG 50062	11e # C 85 Fee T	1	0853			1						3	
AG 50063	Well #4 @ 107 Feet		0930			V						3	
AG 50061	Kockuster Well C 60 feet		0957			V						3	
A'G 50065	VOC Trip Blank	\forall	-	V	V	1						1	
	µg/L. Note any detection of MTBE ≥ 0.2 µg/L Field Blanks only if VOCs detected in samples. e-On form to report results of Potable Water Wells all STPUD ice chests & Blue Ice.	Relinquished Signature Print Company <u>S</u> Date:	Dani	e Public Util		123	ee/ 30	Sig Prir	nt mpany				
Sampla Receipt	Yes/No Comment	Relinquished	ev.	\sim				Re	ceived by		5	r)
Received intact		Signature	ДŢĻĻ	<u>UC</u>	111	<u></u>		Sig	nature	\mathbf{y}		\$	
Received cold		Print Company		1040	440	62		Prid	nt mpany	1 H	$\frac{1010}{1L}$		<u>/</u>
Custody seals		Date:			Гіте			00 Da		3/4		Time	1100
Correct container	L				· · · · · · · · · · · · · · · · · · ·								

Condition Upon Receipt (Attach to COC)

1. Number of ice chests/packages received: 1			
2. Shipper tracking numbers			
3. Were samples received in a chilled condition? Temps: 6 / <th <="" th=""> / <th <="" th=""> <</th></th>	/ <th <="" th=""> <</th>	<	
4. Surface water (SWTR) bact samples: A sample that has a temperature upon receipt of >10C, whether iced or not, should be flagged unless the time since sample collection has been less than two hours.			
5. Do the number of bottles received agree with the Yes No N/A COC?			
6. Verify sample date, time, sampler Yes No N/A			
7. Were the samples received intact? (i.e. no broken Yes No bottles, leaks, etc.)			
8. Were sample custody seals intact? Yes No N/A			
Sample Verification, Labeling and Distribution:			
1. Were all requested analyses understood and Yes No acceptable?			
2. Did bottle labels correspond with the client's ID's? Yes No			
3. Were all bottles requiring sample preservation Yes No N/A FGL properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]			
4. VOAs checked for Headspace? Yes No N/A			
5. Were all analyses within holding times at time of Yes No receipt?			
6. Have rush or project due dates been checked and Yes No N/A accepted?			
Include a copy of the COC for lab delivery. (Bacti. Inorganics and Radio)			
Sample Passint Login and Varification completed by: Paviewed and Single Par	son		
Approved By Sample Receipt, Login and Verification completed by.			
Discrepency Documentation:			
Any items above which are "No" or do not meet specifications (i.e. temps) must be resolved.			
1. Person Contacted: Phone Number:			
Initiated By: Date:			
Problem:			
Resolution:			
2. Person Contacted: Phone Number:			
Initiated By: Date:			
Problem:			
Resolution: (2011369)			
South Tahoe Public Utility Distr	ict		
SP 1602476			
· · · · · · · · · · · · · · · · · · ·			

BSK Associates Fresno 1414 Stanislaus St Fresno, CA93706 559-497-2888 (Main) 559-485-6935 (FAX)

Terry Powers South Tahoe PUD 1275 Meadow Crest Drive South Lake Tahoe, CA 96150

RE: Report for A6C0515 Chemistry

Dear Terry Powers,

Thank you for using BSK Associates for your analytical testing needs. In the following pages, you will find the test results for the samples submitted to our laboratory on 3/4/2016. The results have been approved for release by our Laboratory Director as indicated by the authorizing signature below.

The samples were analyzed for the test(s) indicated on the Chain of Custody (see attached) and the results relate only to the samples analyzed. BSK certifies that the testing was performed in accordance with the quality system requirements specified in the 2009 TNI Standard. Any deviations from this standard or from the method requirements for each test procedure performed will be annotated alongside the analytical result or noted in the Case Narrative. Unless otherwise noted, the sample results are reported on an "as received" basis.

If additional clarification of any information is required, please contact your Project Manager, John Montierth , at (800) 877-8310 or (559) 497-2888 x201.

Thanks again for using BSK Associates. We value your business and appreciate your loyalty.

Sincerely,

John Montierth, Project Manager

Accredited in Accordance with NELAP ORELAP #4021

A6C0515

Chemistry

Case Narrative

Project and	Report Details	Invoice Details					
Client:	South Tahoe PUD	Invoice To: South Tahoe PUD					
Report To:	Terry Powers	Invoice Attn: Terry Powers					
Project #:	South Y - PCE - Lukins	Project PO#: -					
Received:	3/04/2016 - 09:25						
Report Due:	3/08/2016						
Sample Red	ceipt Conditions						
Cooler: Default Cooler		Containers Intact					
Temperature of	on Receipt ºC: 2.2	COC/Labels Agree					
		Received On Blue Ice					
		Packing Material - Bubble Wrap					
		Sample(s) were received in temperature range.					
		Initial receipt at BSK-FAL					
Data Quali	fiers						
The following	g qualifiers have been app	lied to one or more analytical results:					
None applie	d						

Report Distribution

Recipient(s)	Report Format	CC:
Terry Powers	FINAL.RPT	

Sample ID: A6C0515-01 Sampled By: client Sample Description: Well #4 @ 65 feet // AG50061 Sample Date - Time: 03/03/16 - 08:53 Matrix: Drinking Water Sample Type: Grab

BSK Associates Fresno

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Total Organic Carbon	SM 5310C	0.68	0.20	mg/L	1	A602621	03/04/16	03/04/16

Sample ID: A6C0515-02 Sampled By: client Sample Description: Well #4 @ 85 feet // AG50062 Sample Date - Time: 03/03/16 - 08:53 Matrix: Drinking Water Sample Type: Grab

BSK Associates Fresno

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Total Organic Carbon	SM 5310C	0.64	0.20	mg/L	1	A602621	03/04/16	03/04/16

Sample ID: A6C0515-03 Sampled By: client Sample Description: Well #4 @ 107 feet // AG50063 Sample Date - Time: 03/03/16 - 09:30 Matrix: Drinking Water Sample Type: Grab

BSK Associates Fresno

General Chemistry

Analyte	Method	Result	RL	Units	RL Mult	Batch	Prepared	Analyzed Qual
Total Organic Carbon	SM 5310C	0.59	0.20	mg/L	1	A602621	03/04/16	03/04/16

A6C0515

Chemistry

BSK Associates Fresno General Chemistry Quality Control Report

Analyte	Result	RL	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Date Analyzed Qual
SM 5310C - Quality Control										
Batch: A602621										Prepared: 3/4/2016
Prep Method: Method Specific Prepa	ration									Analyst: CEG
Blank (A602621-BLK1)										
Total Organic Carbon	ND	0.20	mg/L							03/04/16
Blank Spike (A602621-BS1)										
Total Organic Carbon	9.9	0.20	mg/L	10		99	80-120			03/04/16
Blank Spike Dup (A602621-BSD1)										
Total Organic Carbon	9.8	0.20	mg/L	10		98	80-120	1	20	03/04/16
Matrix Spike (A602621-MS1), Source: A6C0125-01										
Total Organic Carbon	9.9	0.20	mg/L	10	ND	98	80-120			03/04/16
Matrix Spike (A602621-MS2), Source: A6C0523-02										
Total Organic Carbon	10	0.20	mg/L	10	ND	100	80-120			03/04/16
Matrix Spike Dup (A602621-MSD1), Source: A6C0125-01										
Total Organic Carbon	9.9	0.20	mg/L	10	ND	98	80-120	0	20	03/04/16
Matrix Spike Dup (A602621-MSD2), Source: A6C0523-02										
Total Organic Carbon	10	0.20	mg/L	10	ND	101	80-120	2	20	03/04/16

Notes:

- · The Chain of Custody document and Sample Integrity Sheet are part of the analytical report.
- Any remaining sample(s) for testing will be disposed of according to BSK's sample retention policy unless other arrangements are made in advance.
- All positive results for EPA Methods 504.1 and 524.2 require the analysis of a Field Reagent Blank (FRB) to confirm that the results are not a contamination error from field sampling steps. If Field Reagent Blanks were not submitted with the samples, this method requirement has not been performed.
- Samples collected by BSK Analytical Laboratories were collected in accordance with the BSK Sampling and Collection Standard Operating
 Procedures.
- J-value is equivalent to DNQ (Detected, not quantified) which is a trace value. A trace value is an analyte detected between the MDL and the laboratory reporting limit. This result is of an unknown data quality and is only qualitative (estimated). Baseline noise, calibration curve extrapolation below the lowest calibrator, method blank detections, and integration artifacts can all produce apparent DNQ values, which contribute to the un-reliability of these values.
- (1) Residual chlorine and pH analysis have a 15 minute holding time for both drinking and waste water samples as defined by the EPA and 40 CFR 136. Waste water and ground water (monitoring well) samples must be field filtered to meet the 15 minute holding time for dissolved metals.
- Summations of analytes (i.e. Total Trihalomethanes) may appear to add individual amounts incorrectly, due to rounding of analyte values occurring before or after the total value is calculated, as well as rounding of the total value.
- RL Multiplier is the factor used to adjust the reporting limit (RL) due to variations in sample preparation procedures and dilutions required for matrix interferences.
- Due to the subjective nature of the Threshold Odor Method, all characterizations of the detected odor are the opinion of the panel of analysts. The characterizations can be found in Standard Methods 2170B Figure 2170:1.
- The MCLs provided in this report (if applicable) represent the primary MCLs for that analyte.

Definitions

mg/L:	Milligrams/Liter (ppm)	MDL:	Method Detection Limit	MDA95:	Min. Detected Activity
mg/Kg:	Milligrams/Kilogram (ppm)	RL:	Reporting Limit: DL x Dilution	MPN:	Most Probable Number
µg/L:	Micrograms/Liter (ppb)	ND:	None Detected at RL	CFU:	Colony Forming Unit
µg/Kg:	Micrograms/Kilogram (ppb)	pCi/L:	Picocuries per Liter	Absent:	Less than 1 CFU/100mLs
%:	Percent Recovered (surrogates)	RL Mult:	RL Multiplier	Present:	1 or more CFU/100mLs
NR:	Non-Reportable	MCL:	Maximum Contaminant Limit		

Please see the individual Subcontract Lab's report for applicable certifications.

BSK is not accredited under the NELAC program for the following parameters: **NA**

Certifications: Please refer to our website for a copy of our Accredited Fields of Testing under each certification.

Fresno			
State of California - ELAP	1180	State of Hawaii	4021
State of Nevada	CA000792016-1	State of Oregon - NELAC	4021
EPA - UCMR3	CA00079	State of Washington	C997-15
Sacramento			
State of California - ELAP	2435		
Vancouver			
State of Oregon - NELAC	WA100008-007	State of Washington	C824-14a

South6474

South Tahoe PUD

03042016

Turnaround: Standard Due Date: 3/8/2016

Lab\Forms\Chain of Custody.doc	Correct container	Custodv seals	Received cold		Sample Receipt Yes/No	Please Return all S			 Report MTBE to 0.5 µg/L. Analyze Travel and Field 	Commonto.						ALSOC 3	NGSOUL I	1050001		Pn		Phone: (530)-543-6231 FAX: (530)-541-4296	South Tahoe Public Utility District 1275 Meadow Crest Drive South Lake Tahoe, CA 96150	SOUTH TAHOE
					No Comment	Please Return all STPUD ice chests & Blue Ice.		form to report results of Potable Water Wells	Report MTBE to 0.5 μ g/L. Note any detection of MTBE \geq 0.2 μ g/L Analyze Travel and Field Blanks only if VOCs detected in samples.	~						Well #4 @ 107 &t	WELL # 1C OS Reit	Nell # 4 6 65 ket	Sample Sita	Property JUNY / YUE-LUMIDS			/ District	E PUBLIC UTILITY DISTRICT
	Date:	Company	Print	Signature	Relinguished by:	Date:	Company_S	Print	Relinquished by: Signature							4			Date			Sampler:	Lab Sent to:	TRICT
					i by:	6576	South Tahoe Public Utility District	1 Xu	d by:							S.S.S	SS.	5.000		Sample Information	k	C)	BS	
	Time		\setminus			/ပြ Time	vblic Utility D	111	Druid							4-		H3ICY [Preserve M	mation		\checkmark	X	C
						1	istrict	ALL C	Ć							*	<	$\frac{\lambda}{v}$		10	$\frac{1}{c}$			P
0			1			$ \mathcal{E} $	い		E												South6474		, Ane	
ontra	Date:	Company	Print	Signature	Received by:	Date:	Company	Print	Received by: Signature							 					174 174	<u> </u>	Analyses Requested	
C C	1-1-5			M	by:			K	by:		 												queste	
	F	R.S.	Ŋ	N	7							-									03/04/2010 2		4	СНА
-	Time	ſ,	Myor			Time		\backslash		F					 	 دىر)	تى	1	# 01 U	ontan				N N
Page of	125		yon Harr's		~3											v *			Remarks	Other		24 Hr	Turnaround Tim e	CHAIN OF CUSTOD

BSK Associates SR-FL-0002-15

DONP	SSUCIALE	5 3R-FL-0002-15						· · · · ·	South647	'4 		2		
	-	e Integri)		, · ·	١								
BS	K Bc	ottles: Yes	NO F	⁵ age	lof	}		· · · · · · · · · · · · · · · · · · ·						
	Was te	emperature within i istry ≤ 6°C Mici	range?		0 No 1	NA		/ere correct containers and preservatives eceived for the tests requested?					No NA	
COC Info	If sam		day, is there evider	ice	Yes No (Wer	e there bubbles atiles Only)		Yes	NO CHA			
ũ	Did all	<u> </u>			a sufficient am	ount of san	nple receive	d?						
S		bottle labels agree				10	Do s	amples have a	hold time <	<72 hours?		Yes No		
		odium thiosulfate a hIorine was no Iong	added to CN sample ger present?	e(s)	Yes No	NA)	Was PM:	PM notified of	discrepanc By/Time:	ies?		Yes	NOCNA	
	250ml	(A) 500ml(B) 1Lite	ər(C) 40ml VOA(V)	_	Checks	Pas	sed?	1-5						
	2000	Na ₂ S ₂ O ₃			-	No.	-							
		(P) ^{White Cap}				-								
		and the second	Cap NH4OH(NH4)2SO4	DW	Cl, pH > 8	Y	N .		Server 1.2	Sec. 1				
	Cr6 (F	Pink Label/Blue Cap	NH4OH(NH4)2SO4	ww	pH 9.3-9.7	Y	Ν							
the lab	Cr6 (F	D) Black Label/Blue Cap	NH4OH(NH4)2SO4	7199	pH 9.0-9.5	Y	N				100 B 100 B 100 B 100 B			
intt	HNO ₃	(P) Red Cap				-						N. 201 N. 2012		
ber	H ₂ SO	4 (P) or (AG) Yellow Cap/Label		pH < 2	Y	N		h (a second	
performed	and here at the	I (P) Green Cap			CI, pH >10	Y	N		1 1					
per	NaOH	I + ZnAc (P)			pH > 9	Y	N				1114	レー		
are	Same Section Section	lved Oxygen 300)ml (a)			_		Co. and Developments			1 0 0		<u></u>	
A or	the second second second		32, 625, 632/8321, 81	51			0.004			and the second				
p	8270			<u>о</u> ,		Nettoria.	-				2	1	1	
eived either N/	HCI (A	AG) ^{Lt. Blue Label} O8	&G, Diesel			-					5	4	lb	
ottles Received	Na ₂ O	3S+HCI (AG) ^{LL Pir}	^{nk Label} 525		ł		-				<u> </u>			
s a	Na ₂ S ₂	2O ₃ 1 Liter (Brown	n P) 549		—	-	_							
ries Ject	Na ₂ S ₂	2O3 (AG) ^{Blue Label} 5	47,515,548,THM,524		-		-		1. S. S.	X				
		O3 (CG) Blue Label	504, 505		—	-	_			X				
	Na ₂ S ₂	2O3 + MCAA (CG)Orange Label 531		pH < 3	Y	N							
/ch	NH₄C	I (AG) ^{Purple Label}		<u>5.6450 (1943</u>		-						863843		
B vation/chlorin	EDA ((AG) ^{Brown Label} DI			20. Mir Ma <u>n</u> a 19. 34		2.53							
erz			as, MTBE, 8260/624			log-vi	<u></u>					876525	<u>/////////////////////////////////////</u>	
pres		rpH 4 (CG)	as, withe, 6200/024											
S	None	A CONTRACT OF								<u> </u>	35.65°			
mean		4 (CG) ^{Salmon Label}				-	-	3√				100046		
Ĩ	Other		<u></u>		<u>e i e Tagai</u> s	1	<u>trediti</u>	<u> </u>		1 1	2.556			
a.	Asbes		stic w/ Foil							1				
	Low L	evel Hg / Metals	Double Baggie			-				1			7801.20.0004977574753	
	Sector and all the sector and	d Water			1		-			/	eng on Al-Angeres			
			/ 500 / 1 Liter			-						<u> </u>		
	Soil T Tedla		Steel / Plastic		-	100-	11 992					332		
	reula	Container	Preservative	Date	/Time/Initial	s		Container	Pres	servative	Date	e/Tim	ne/Initials	
Split	SP						5 P							
S	SP						S P							
Comments											·			
Labe	led by:	<u>JU @ 11</u>	Label	s che	cked by: 💆	2_	_@'	1.10	RUSH F	aged by:		@		

A6C0515

03/04/2016

Appendix F.2 – Pre-Pilot Testing Water Quality Sample Results

South Y PCE Study - Spring 2016 LBWC#4 Pre-Pilot Test Results

Date		03/24/2016				
Time		12:00				
Hours Pumping		0.68				
Flow	gpm	143				
Total Flow	gallons	4,780				
				Exceeds		
Parameter	Units °C	Results	*Standard	Standard?	DLR	Method
Temperature	C	10.1				
pH-Field		6.41				SM4500H ⁺ B
Specific Conductance	μS	484	900-1600-2200	No	5	SM2510B
Alkalinity, HCO ₃	mg/L	77.0			5	SM 2320B
Alkalinity, CO ₃	mg/L	0			5	SM 2320B
Alkalinity, OH	mg/L	0			5	SM 2320B
Alkalinity, Total	mg/L	77.0			5	SM 2320B
Fluoride	mg/L	< 0.05	2.0	No	0.05	EPA 300
Chloride	mg/L	93.1	250-500-600	No	0.5	EPA 300
NO ₂ -N	mg/L	< 0.01	1	No	0.01	EPA 300
Bromide	mg/L	0.051			0.01	EPA 300
NO ₃ -N	mg/L	1.25	10	No	0.01	EPA 300
PO ₄ -P	mg/L	< 0.01			0.01	EPA 300
SO ₄	mg/L	3.41	250-500-600	No	0.5	EPA 300
TDS	mg/L	308	500-1000-1500	No	5	SM 2540C
SS	mg/L	11.4			1	SM 2540D
Hardness, Total	mg/L	158			5	SM 2340B
Са	mg/L	41.0			1	EPA 200.7
Mg	mg/L	14.1			0.1	EPA 200.7
к	mg/L	4.46			1	EPA 200.7
Na	mg/L	15.9			1	EPA 200.7
Anions		4.05				Calculation
Cations		4.01				Calculation
Langlier Index		-1.66				Calculation
Aggressive Index		10.31				Calculation
cis-1,2-DCE	μg/L	0.6	6.0	No	0.5	EPA 524.2
PCE	μg/L	39	5	Yes	2.5	EPA 524.2
Toluene	μg/L	16	15000	No	0.5	EPA 524.2
TCE	μg/L	0.8	5.0	No	0.5	EPA 524.2
TPH-Gas	μg/L	ND			50	EPA 8015B
TPH-Diesel	mg/L	ND			0.5	EPA 8015
тос	mg/L	0.55			0.20	SM 5310C

Recommended-Upper-Short Term levels

South Y PCE Study - Spring 2016 LBWC#4 Pre-Pilot Test Results

Parameter	Units	Results	*Standard	Exceeds Standard?	DLR	Method
Aluminum	μg/L	ND	1000	No	20	EPA 200.8
Antimony	μg/L	ND	6	No	1	EPA 200.8
Arsenic	μg/L	1.91	10	No	1	EPA 200.8
Barium	μg/L	123	1000	No	2	EPA 200.8
Beryllium	μg/L	ND	4	No	1	EPA 200.8
Cadmium	μg/L	ND	5	No	0.5	EPA 200.8
Chromium	μg/L	3.75	50	No	1	EPA 200.8
Copper	μg/L	37.8			2	EPA 200.8
Lead	μg/L	0.817			0.5	EPA 200.8
Manganese	μg/L	728	50	Yes	2	EPA 200.8
Mercury	μg/L	ND	2	No	0.2	EPA 245.1
Nickel	μg/L	10.4	100	No	5	EPA 200.8
Selenium	μg/L	ND	50	No	5	EPA 200.8
Silver	μg/L	ND	10	No	0.5	EPA 200.8
Thallium	μg/L	ND	2	No	1	EPA 200.8
Vanadium	μg/L	2.97	50	No	3	EPA 200.8
Zinc	μg/L	40.8	5000	No	20	EPA 200.8
Boron	mg/L	ND	1	No	0.05	EPA 200.7
Iron	mg/L	4.99	0.3	Yes	0.02	EPA 200.7

*Standard refers to Primary and Secondary MCL's or Notification Level

Appendix F.3 – Dynamic Flow Survey Water Quality Sample Results

South Tahoe Public Utility District 1275 Meadow Crest Drive South Lake Tahoe, CA 96150	Lab ID Customer	: SP 1603610 : 2-11369
	Laboratory Report	

Introduction: This report package contains total of 17 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(8 pages) : Results for each sample submitted.
Quality Control	(7 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
LBWC #4 110 ft	03/29/2016	04/01/2016	SP 1603610-001	GW
LBWC #4 82 ft	03/29/2016	04/01/2016	SP 1603610-002	GW
LBWC #4 72 ft	03/29/2016	04/01/2016	SP 1603610-003	GW
LBWC #4 68 ft	03/29/2016	04/01/2016	SP 1603610-004	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 4 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

	Organic QC
524.2	04/04/2016:204708 All analysis quality controls are within established criteria, except: The following note applies to Bromomethane (Methyl Bromide), Trichlorofluoromethane F-11, Chloroethane (Ethyl Chloride), Vinyl Chloride: 360 CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.
	04/05/2016:204722 All analysis quality controls are within established criteria.
	04/04/2016:203877 All preparation quality controls are within established criteria.

Organia OC

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 1 of 17

April 6, 2016	Lab ID	: SP 1603610
South Tahoe Public Utility District	Customer	: 2-11369

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By David Terz, B.A., M.B.A.

Digitally signed by David Terz, B.A., M.B.A. Title: QA Director Date: 2016-04-06

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603610-001 Customer ID : 2-11369

Sampled On : March 29, 2016-12:10 Sampled By : Alward Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC #4 110 ft
Project	: South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	TQL	Onts	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	82.4	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	76.2	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 3 of 17

April 6, 2016 Description : LBWC #4 110 ft

Lab ID : SP 1603610-001 Customer ID : 2-11369

Sample Result - Organic

Constituent	Decult	PQL	Units	Note	Sample	Preparation	Sample Analysis		
Constituent	Result	PQL	Units	Note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tetrachloroethylene	52.4	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722	
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichloroethylene	1.0	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603610-002 Customer ID : 2-11369

Sampled On : March 29, 2016-12:40 Sampled By : Alward Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC #4 82 ft
Project	: South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	IQL	Onits	11010	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	83.6	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	75.9	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 5 of 17

April 6, 2016 Description : LBWC #4 82 ft

Lab ID : SP 1603610-002 Customer ID : 2-11369

Sample Result - Organic	
-------------------------	--

Constituent	Decult	PQL	Units	Note	Sample	Preparation	Sample Analysis		
	Result	PQL	Units	Note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Isopropylbenzene	ND	0.5	ug/L ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
p-Isopropyltoluene	ND	0.5	ug/L ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Methyl tert-Butyl Ether			-		524.2	04/04/10.2038/7	524.2	04/04/10.204/08	
(MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tetrachloroethylene	47.0	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722	
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichloroethylene	1.0	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichlorotrifluoroethane			-						
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603610-003 Customer ID : 2-11369

Sampled On : March 29, 2016-13:10 Sampled By : Alward Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC #4 72 ft
Project	: South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	TQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	85.8	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	80.2	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 7 of 17

April 6, 2016 Description : LBWC #4 72 ft

Lab ID : SP 1603610-003 Customer ID : 2-11369

Sample Result	t - Organic
---------------	-------------

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesult	FQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
(ETBE)			-					
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	55.1	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	1.0	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-			-					
Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603610-004 Customer ID : 2-11369

Sampled On : March 29, 2016-13:40 Sampled By : Alward Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC #4 68 ft
Project	: South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample Preparation		Sample Analysis	
	Result	TQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	84.5	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	80.2	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 9 of 17

April 6, 2016 Description : LBWC #4 68 ft

Lab ID : SP 1603610-004 Customer ID : 2-11369

Sample Result - O	rganic
-------------------	--------

Constituent	Result	PQL	Units	Note	Sample	Preparation	Sample Analysis		
	Result	гųl	Units	note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl tert-Butyl Ether			-						
(ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Methyl tert-Butyl Ether	ND	0.0	-						
(MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tert-amyl-methyl Ether	ND	0.5	•		504.0	04/04/16 202055	524.2	04/04/16 204700	
(TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tetrachloroethylene	52.3	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722	
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichloroethylene	1.1	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-	ND	0.5	•		504.0	04/04/16 202055	524.2	04/04/16 204700	
Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

Lab ID Customer : SP 1603610 : 2-11369

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,1,1,2-Tetrachloroethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	59.8 %	12-178	
		(CC 1680990-001)	MSD	ug/L	10.00	64.3 %	12-178	
			MSRPD	ug/L	10.00	7.2%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.1 %	70-130	
1,1,1-Trichloroethane(TCA)	524.2	04/04/16:203877VRG		ug/L	10.00	ND	< 0.5	
		(CC 1680990-001)	MS MSD	ug/L	10.00 10.00	62.4 % 67.0 %	9-176 9-176	
		(CC 1080990-001)	MSD MSRPD	ug/L ug/L	10.00	7.1%	≤33	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	96.0 %	70-130	
1,1,2,2-Tetrachloroethane	524.2	04/04/16:203877VRG		ug/L ug/L	10.00	ND	< 0.5	
1,1,2,2 Telucinoroeunane	02.112	0 1/0 1/10/2020/ / / 140	MS	ug/L	10.00	69.7 %	23-180	
		(CC 1680990-001)	MSD	ug/L	10.00	76.0 %	23-180	
			MSRPD	ug/L	10.00	8.6%	≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	110 %	70-130	
1,1,2-Trichloroethane	524.2	04/04/16:203877VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	61.7 %	25-173	
		(CC 1680990-001)	MSD	ug/L	10.00	68.4 %	25-173	
	524.2	04/04/16 20 47001/00 0	MSRPD	ug/L	10.00	10.3%	≤29	
110.11 4	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
1,1-Dichloroethane	524.2	04/04/16:203877VRG		ug/L	10.00	ND 59.9 %	<0.5 15-161	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00	59.9 % 64.7 %	15-161	
		(ee 1000))0-001)	MSRPD	ug/L ug/L	10.00	7.8%	≤36	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	95.5 %	70-130	
1,1-Dichloroethylene	524.2	04/04/16:203877VRG		ug/L	10.00	ND	< 0.5	
-,,,,,			MS	ug/L	10.00	56.4 %	0-162	
		(CC 1680990-001)	MSD	ug/L	10.00	63.9 %	0-162	
			MSRPD	ug/L	10.00	12.4%	≤33	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	90.1 %	70-130	
1,1-Dichloropropene	524.2	04/04/16:203877VRG		ug/L		ND	< 0.5	
		(00.1(00000.001)	MS	ug/L	10.00	57.7 %	0-171	
		(CC 1680990-001)	MSD MSRPD	ug/L	10.00	62.6 %	0-171 ≤31	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00 10.00	8.1% 88.8 %	<u>≥</u> 31 70-130	
1,2,3-Trichlorobenzene	524.2	04/04/16:203877VRG		ug/L ug/L	10.00	00.0 % ND	<0.5	
1,2,3-11101000012010	524.2	04/04/10.2038//VRO	MS	ug/L ug/L	10.00	66.0 %	14-181	
		(CC 1680990-001)	MSD	ug/L	10.00	69.3 %	14-181	
		(,	MSRPD	ug/L	10.00	4.9%	≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	104 %	70-130	
1,2,4-Trichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.8 %	10-180	
		(CC 1680990-001)	MSD	ug/L	10.00	66.4 %	10-180	
		0.1/0.1/1.4 6.0 1=0.05	MSRPD	ug/L	10.00	4.0%	≤32	
	524.2		CCV	ug/L	10.00	99.2 %	70-130	
1,2,4-Trimethylbenzene	524.2	04/04/16:203877VRG		ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00 10.00	44.4 % 49.4 %	2-192 2-192	
		(00100000001)	MSD	ug/L ug/L	10.00	49.4 % 10.8%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	102 %	70-130	
1,2-Dichlorobenzene	524.2	04/04/16:203877VRG		ug/L ug/L	10.00	ND	<0.5	
	521.2	2 # 0 # 10.20007 / TRO	MS	ug/L	10.00	63.3 %	13-191	
		(CC 1680990-001)	MSD	ug/L	10.00	70.3 %	13-191	
			MSRPD	ug/L	10.00	10.5%	≤35	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 11 of 17

: SP 1603610 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,2-Dichlorobenzene-d4	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	79.6 %	70-130	
· · · · · · · · ·			MS	ug/L	10.00	89.8 %	70-130	
		(CC 1680990-001)	MSD	ug/L	10.00	92.6 %	70-130	
			MSRPD	ug/L	10.00	3.1%	≤20	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	94.9 %	70-130	
1,2-Dichloroethane (EDC)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		(00.1.(00.000.001)	MS	ug/L	10.00	67.2 %	18-162	
		(CC 1680990-001)	MSD	ug/L	10.00	72.2 %	18-162	
	524.2	04/04/16:204709340	MSRPD	ug/L	10.00	7.2%	≤33	
1.2 Dishlorongono	524.2 524.2	04/04/16:204708VRG 04/04/16:203877VRG	CCV Blank	ug/L	10.00	107 % ND	70-130 <0.5	
1,2-Dichloropropane	524.2	04/04/10:2038//VKG	MS	ug/L ug/L	10.00	65.0 %	<0.5 10-163	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	70.2 %	10-103	
		(ee 1000))0 001)	MSRPD	ug/L	10.00	7.7%	≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	105 %	70-130	
1,3,5-Trimethylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
,-,		i i i i i i i i i i i i i i i i i i i	MS	ug/L	10.00	52.0 %	0-210	
		(CC 1680990-001)	MSD	ug/L	10.00	57.8 %	0-210	
			MSRPD	ug/L	10.00	10.7%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	70-130	
1,3-Dichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.7 %	17-182	
		(CC 1680990-001)	MSD	ug/L	10.00	69.5 %	17-182	
			MSRPD	ug/L	10.00	8.7%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	101 %	70-130	
1,3-Dichloropropane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		(CC 1(20000 001)	MS MSD	ug/L	10.00	69.9 %	0-178 0-178	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	74.7 % 6.6%	0-178 ≤29	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	112 %	70-130	
1.4-Dichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
1,4-Diemorobenzene	524.2	04/04/10.2030// VIC	MS	ug/L ug/L	10.00	64.1 %	19-183	
		(CC 1680990-001)	MSD	ug/L	10.00	69.5 %	19-183	
		(,	MSRPD	ug/L	10.00	8.1%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	104 %	70-130	
2,2-Dichloropropane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	51.3 %	0-288	
		(CC 1680990-001)	MSD	ug/L	10.00	57.7 %	0-288	
			MSRPD	ug/L	10.00	11.8%	≤33	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	80.9 %	70-130	
2-Chlorotoluene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		(00.1(00000.001)	MS	ug/L	10.00	65.3 %	17-180	
		(CC 1680990-001)	MSD MSRPD	ug/L	10.00	71.6 %	17-180	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00 10.00	9.1% 103 %	≤38 70-130	
4-Bromofluorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	87.7 %	70-130	
	324.2	04/04/10.2030//VKU	MS	ug/L ug/L	10.00	93.3 %	70-130	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	95.2 %	70-130	
		(22 2000)0001)	MSRPD	ug/L	10.00	2.0%	≤30	
4-Bromofluorobenzene (BFB)	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	95.3 %	70-130	
4-Chlorotoluene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.3 %	11-177	
		(CC 1680990-001)	MSD	ug/L	10.00	70.1 %	11-177	
			MSRPD	ug/L	10.00	10.2%	≤41	

Quality Control - Organic

Lab ID : SP 1603610 Customer : 2-11369

Quality	Control -	Organic
---------	-----------	---------

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
4-Chlorotoluene	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	104 %	70-130	
Benzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	61.3 %	12-158	
		(CC 1680990-001)	MSD MSRPD	ug/L	10.00 10.00	67.3 % 9.3%	12-158 ≤36	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	9.3% 97.2 %	<u>≤30</u> 70-130	
Bromobenzene	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
	02.112	0 1/0 1/1012020077 1110	MS	ug/L	10.00	61.2 %	23-177	
		(CC 1680990-001)	MSD	ug/L	10.00	65.9 %	23-177	
	524.0	0.1/0.1/1.6.00.150.01/10.0	MSRPD	ug/L	10.00	7.3%	<u>≤40</u>	
D 11 1	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.9 %	70-130	
Bromochloromethane	524.2	04/04/16:203877VRG	Blank MS	ug/L ug/L	10.00	ND 57.9 %	<0.5 4-186	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	62.5 %	4-186	
		(MSRPD	ug/L	10.00	7.7%	≤30	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.2 %	70-130	
Bromodichloromethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	<0.5	
		(001(00000.001)	MS	ug/L	10.00	63.5 %	11-164	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	67.7 % 6.5%	11-164 ≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	97.8 %	70-130	
Bromoform	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
			MS	ug/L	10.00	53.7 %	0-235	
		(CC 1680990-001)	MSD	ug/L	10.00	62.0 %	0-235	
			MSRPD	ug/L	10.00	14.4%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	78.8 %	70-130	
Bromomethane (Methyl Bromide)	524.2	04/04/16:203877VRG	Blank MS	ug/L ug/L	10.00	ND 68.4 %	<0.5 0-196	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	65.9 %	0-196	
		(MSRPD	ug/L	10.00	3.7%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	141 %	70-130	360
Carbon Tetrachloride	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		(00.1(00000.001)	MS	ug/L	10.00	59.5 %	5-175	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	64.2 % 7.5%	5-175 ≤32	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	89.4 %	70-130	
Chlorobenzene	524.2	04/04/16:203877VRG		ug/L	10100	ND	< 0.5	
			MS	ug/L	10.00	63.8 %	14-175	
		(CC 1680990-001)	MSD	ug/L	10.00	69.5 %	14-175	
	524.0	0.1/0.1/1.6.00.150.01/10.0	MSRPD	ug/L	10.00	8.6%	≤35	
Chlensetherse (Ethed Chlenide)	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	105 %	70-130	
Chloroethane (Ethyl Chloride)	524.2	04/04/16:203877VRG	Blank MS	ug/L ug/L	10.00	ND 78.5 %	<0.5 0-184	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	73.0 %	0-184	
		(MSRPD	ug/L	10.00	7.2%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	156 %	70-130	360
Chloroform	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		(00.100000.001)	MS	ug/L	10.00	65.2 %	15-163	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	69.7 % 6.8%	15-163 ≤36	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	102 %	<u>≤30</u> 70-130	
Chloromethane(Methyl Chloride)	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
			MS	ug/L	10.00	55.6 %	0-224	
		(CC 1680990-001)	MSD	ug/L	10.00	56.4 %	0-224	

: SP 1603610 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Chloromethane(Methyl Chloride)	524.2	04/04/16:203877VRG	MSRPD	ug/L	10.00	1.5%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	118 %	70-130	
cis-1,2-Dichloroethylene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	61.1 %	16-172	
		(CC 1680990-001)	MSD	ug/L	10.00	66.1 %	16-172	
			MSRPD	ug/L	10.00	7.9%	≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	93.8 %	70-130	
cis-1,3-Dichloropropene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	58.4 %	5-158	
		(CC 1680990-001)	MSD	ug/L	10.00	62.8 %	5-158	
			MSRPD	ug/L	10.00	7.3%	<u>≤38</u>	
	524.2	04/04/16:204708VRG		ug/L	10.00	91.4 %	70-130	
Dibromochloromethane	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS	ug/L	10.00	60.1 %	1-180	
		(CC 1080990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	67.0 % 10.8%	1-180 ≤34	
	524.2	04/04/16/204709VDC		-		89.9 %		
Dil		04/04/16:204708VRG 04/04/16:203877VRG		ug/L	10.00	89.9 % ND	70-130	
Dibromomethane	524.2	04/04/10:2038//VRG	Blank MS	ug/L	10.00	59.5 %	<0.5 11-168	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	64.3 %	11-168	
		(CC 1000))0-001)	MSRPD	ug/L ug/L	10.00	7.8%	≤28	
	524.2	04/04/16:204708VRG		ug/L ug/L	10.00	102 %	70-130	
Dichlorodifluoromethane	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
Diemorounnuorometnane	524.2	04/04/10.2030///VRO	MS	ug/L ug/L	10.00	59.7 %	0-334	
		(CC 1680990-001)	MSD	ug/L	10.00	58.4 %	0-334	
		(MSRPD	ug/L	10.00	2.1%	≤39	
	524.2	04/04/16:204708VRG		ug/L	10.00	119 %	70-130	
Dichloromethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	58.5 %	20-157	
		(CC 1680990-001)	MSD	ug/L	10.00	64.6 %	20-157	
			MSRPD	ug/L	10.00	9.8%	≤36	
Ethyl tert-Butyl Ether	524.2	04/04/16:203877VRG		ug/L		ND	<3	
			MS	ug/L	10.00	72.1 %	11-165	
		(CC 1680990-001)	MSD	ug/L	10.00	78.9 %	11-165	
			MSRPD	ug/L	10.00	0.67	≤3	
	524.2	04/04/16:204708VRG		ug/L	10.00	114 %	70-130	
Ethylbenzene	524.2	04/04/16:203877VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	59.7 %	9-174	
		(CC 1680990-001)	MSD	ug/L	10.00	67.5 %	9-174	
	524.2	04/04/16:2047093/DC	MSRPD CCV	ug/L	10.00 10.00	12.2%	≤37	
E	524.2	04/04/16:204708VRG 04/04/16:203877VRG		ug/L	10.00	101 % ND	70-130	
Freon-11	524.2	04/04/10:2038//VRG	MS	ug/L	10.00	69.8 %	<0.5 0-232	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	09.8 % 75.2 %	0-232	
		(CC 1080330-001)	MSRPD	ug/L ug/L	10.00	7.4%	≤35	
Hexachlorobutadiene	524.2	04/04/16:203877VRG		ug/L	10.00	ND	<0.5	
	524.2	5.//01/10.2030// VRO	MS	ug/L ug/L	10.00	66.5 %	14-200	
		(CC 1680990-001)	MSD	ug/L	10.00	68.2 %	14-200	
			MSRPD	ug/L	10.00	2.6%	≤40	
	524.2	04/04/16:204708VRG		ug/L	10.00	93.9 %	70-130	
Isopropyl Ether	524.2	04/04/16:203877VRG		ug/L		ND	<3	
I IJ II			MS	ug/L	10.00	74.7 %	8-165	
		(CC 1680990-001)	MSD	ug/L	10.00	82.4 %	8-165	
			MSRPD	ug/L	10.00	0.78	≤3	

Quality Control - Organic

: SP 1603610 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Isopropyl Ether	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	120 %	70-130	
Isopropylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	64.1 %	4-159	
		(CC 1680990-001)	MSD	ug/L	10.00	69.9 %	4-159	
	524.2	04/04/14 6 00 47000 470	MSRPD	ug/L	10.00	8.7%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	70-130	
Methyl tert-Butyl Ether	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	124 %	70-130	
Methyl tert-Butyl Ether (MTBE)	524.2	04/04/16:203877VRG	Blank MS	ug/L	10.00	ND 77.6 %	<1.0 11-168	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	83.9 %	11-168	
		(CC 1000))0-001)	MSRPD	ug/L	10.00	7.8%	≤29	
Methylene Chloride	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.8 %	70-130	
Naphthalene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
			MS	ug/L	10.00	60.7 %	0-189	
		(CC 1680990-001)	MSD	ug/L	10.00	65.7 %	0-189	
			MSRPD	ug/L	10.00	7.9%	≤32	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.2 %	70-130	
n-Butylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	65.0 %	4-186	
		(CC 1680990-001)	MSD	ug/L	10.00	69.8 %	4-186	
			MSRPD	ug/L	10.00	7.2%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	100 %	70-130	
n-Propylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	65.1 %	0-174	
		(CC 1680990-001)	MSD	ug/L	10.00	70.0 %	0-174	
	524.2	04/04/16/2047093/DC	MSRPD CCV	ug/L	10.00	7.2%	≤37 70-130	
p-Isopropyltoluene	524.2	04/04/16:204708VRG 04/04/16:203877VRG	Blank	ug/L ug/L	10.00	103 % ND	<0.5	
p-isopropynoidene	524.2	04/04/10.2038//VKO	MS	ug/L ug/L	10.00	61.1 %	0-193	
		(CC 1680990-001)	MSD	ug/L	10.00	66.4 %	0-193	
		(00000000000000000000000000000000000000	MSRPD	ug/L	10.00	8.3%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	99.1 %	70-130	
sec-Butylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	65.7 %	0-177	
		(CC 1680990-001)	MSD	ug/L	10.00	72.2 %	0-177	
			MSRPD	ug/L	10.00	9.5%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
Styrene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	32.6 %	0-198	
		(CC 1680990-001)	MSD	ug/L	10.00	39.6 %	0-198	
			MSRPD	ug/L	10.00	19.3%	≤37	
	524.2	04/04/16:204708VRG		ug/L	10.00	73.7 %	70-130	
ТАМЕ	524.2	04/04/16:203877VRG		ug/L	10.00	ND	<3	
		(CC 1680990-001)	MS MSD	ug/L	10.00	69.6 % 75.6 %	15-162	
		(UC 1080990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	75.6 % 0.60	$\begin{array}{c} 15-162 \\ \leq 3 \end{array}$	
	524.2	04/04/16:204708VRG		ug/L ug/L	10.00	111 %	<u>≤</u> 3 70-130	
tert-Butanol	524.2	04/04/16:203877VRG		ug/L ug/L	10.00	ND	<2	
	524.2	07/04/10.2030//VKU	MS	ug/L ug/L	50.00	81.8 %	0-198	
		(CC 1680990-001)	MSD	ug/L	50.00	71.7 %	0-198	
		(22 1000)0001)	MSRPD	ug/L	10.00	13.1%	≤39	
	524.2	04/04/16:204708VRG		ug/L	50.00	91.3 %	70-130	
tert-Butylbenzene	524.2	04/04/16:203877VRG		ug/L		ND	<0.5	
	221.2	2 . 0 . 10.200077 TRO	MS	ug/L	10.00	66.3 %	9-179	

Quality Control - Organic

matrix affects analyte recovery.

: SP 1603610 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
tert-Butylbenzene	524.2	(CC 1680990-001)	MSD	ug/L	10.00	72.3 %	9-179	
5		` '	MSRPD	ug/L	10.00	8.7%	≤38	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	30-130	
Tetrachloroethylene (PCE)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
•			MS	ug/L	10.00	56.3 %	14-186	
		(CC 1680990-001)	MSD	ug/L	10.00	60.1 %	14-186	
			MSRPD	ug/L	10.00	6.5%	≤33	
	524.2	04/05/16:204722VRG	CCV	ug/L	10.00	76.1 %	70-130	
Foluene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	47.9 %	3-174	
		(CC 1680990-001)	MSD	ug/L	10.00	67.3 %	3-174	
			MSRPD	ug/L	10.00	24.3%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.5 %	30-130	
rans-1,2-Dichloroethylene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	56.1 %	5-165	
		(CC 1680990-001)	MSD	ug/L	10.00	60.2 %	5-165	
			MSRPD	ug/L	10.00	7.2%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	88.8 %	70-130	
rans-1,3-Dichloropropene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		(00.1.000000.001)	MS	ug/L	10.00	52.0 %	0-169	
		(CC 1680990-001)	MSD	ug/L	10.00	58.9 %	0-169	
			MSRPD	ug/L	10.00	12.4%	≤31	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	82.5 %	70-130	
Trichloroethylene (TCE)	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(00.1(00000.001)	MS	ug/L	10.00	60.1 %	11-167	
		(CC 1680990-001)	MSD MSRPD	ug/L	10.00 10.00	64.8 % 7.6%	11-167 ≤35	
	524.2	04/04/16-204709VDC		ug/L		92.4 %	<u>≥</u> 33 70-130	
	524.2 524.2	04/04/16:204708VRG	CCV	ug/L	10.00			260
Frichlorofluoromethane F-11		04/04/16:204708VRG	CCV	ug/L	10.00	149 %	70-130	360
Frichlorotrifluoroethane F-113	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS MSD	ug/L	10.00 10.00	77.1 % 83.7 %	0-183 0-183	
		(CC 1080990-001)	MSD	ug/L ug/L	10.00	83.7 %		
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	118 %	70-130	
Vinyl Chloride	524.2	04/04/16:203877VRG	Blank		10.00	ND	<0.5	
vinyi Chionde	324.2	04/04/10:2058//VKG	MS	ug/L ug/L	10.00	69.9 %	<0.5 0-208	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	70.5 %	0-208	
		(CC 1080330-001)	MSRPD	ug/L ug/L	10.00	0.9%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	145 %	30-130	360
Kylenes m,p	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	500
vytenes m,p	524.2	0-7/0-7/10.2030//VKU	MS	ug/L ug/L	20.00	55.8 %	0-193	
		(CC 1680990-001)	MSD	ug/L ug/L	20.00	61.7 %	0-193	
		(00 1000) 001)	MSRPD	ug/L ug/L	10.00	10.1%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	20.00	97.1 %	70-130	
Cylenes o	524.2	04/04/16:203877VRG	Blank	ug/L	20.00	ND	<0.5	
_,0 0	221.2	e # 0 # 10.200077 VRO	MS	ug/L	10.00	58.7 %	0-188	
		(CC 1680990-001)	MSD	ug/L	10.00	65.4 %	0-188	
		(MSRPD	ug/L	10.00	10.8%	≤36	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
Definition								
	libration Verific	ation - Analyzed to verify	v the instrum	nent calibratio	on is within a	criteria		
		rify that the preparation					ples	
· Matrix Spilzas		ple is spiked with a know						at sample
MS matrix affects at						mareatte		

Quality Control - Organic

Page 16 of 17

April 6, 2016	Lab ID	: SP 1603610
South Tahoe Public Utility District	Customer	: 2-11369

Quality Control - Organic

Definition	
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.
ND	: Non-detect - Result was below the DQO listed for the analyte.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
360	: CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.

SOUTH TAHOE PUBLIC UTILITY DISTRICT

1603010 CHAIN OF CUSTODY

South Tahoe Public I 1275 Meadow Crest South Lake Tahoe, C Phone: (530)-543-62 FAX: (530)-541-429	Drive CA 96150 31	Lab Sent to: Sampler:	E Gt I Wal	<u>/</u>		לע		Ana	lyses	Requ	ested				Turnaround Time andard
Lab ID#	Project South Y PCE Study Sample Site		tample Ini	•	Matrix	SVX0+422							5	e –	her
A 650384	LBIDC #4 110 Ft	03-19-11	1210	4°/HCl	GW	\mathbf{A}								3	
AG. 50385	LBWCHY 82 ft	D3-19-16			120				┝╌┼	_				3	
AG50386	1BWC#4 72 Ft	03-29-16			GW	4			┢╌┼		$\left - \right $			7 7	
AG.50387	LBWC#4 6FF1	03-29-16	1340	<u> </u>	Ger				$\left \right $		$\left \right $			2	
									$\left \right $	+	╀╌╂		+	+	
									┼┼	+-	┼╌┼			+-	
			<u> </u>						+		+				
			-												
··											\uparrow				
Analyze Travel and Use Calif State Writ	i μg/L. Note any detection of MTBE ≥ 0.2 μg/L Field Blanks only if VOCs detected in samples. e-On form to report results of Potable Water Wells	Print Company _S	1U Terr		DU d ity District		ר זט		Signa Print	any				me	
	all STPUD ice chests & Blue Ice.			- <u>f</u> <u>-</u>		<i>•</i> •			ļ			5	~	$\overline{}$	
Sampla Receipt Received intact	Yes/No Comment	Relinquished Signature(SITT	2ac-C))DO)(91	177	<u>(AU)</u>	Rece Signa	ved by ture	\searrow	(XXX)	61	\mathcal{I}	
Received cold		Print							Print	1	YC	<u>vie</u>	P	-	
Custody seals		Company Date:			Time				Comp Date:			Tr	Tir	me]	000
Correct container		Jaic								~	7	/ '		-	

\Lab\Forms\Chain of Custody.doc

Page ____ of ____

Condition Upon Receipt (Attach to COC)

Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers							
3. Were samples received in a chilled condition? Temps:	4	/	_/	/	_/	/	/
4. Surface water (SWTR) bact samples: A sample that should be flagged unless the time since sample coll		•		•		whether ic	ed or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken [bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
1. Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of [receipt?	Yes	No					
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. Inor	oanics a	and Ra	dio)				
Sample Receipt, Login and Verification completed by:	-		Reviewed a Approved		e Parson	FGI Title: Sa	/ signed by Nicole Parson ample Receiving 4/01/2016-13:46:00
Discrepency Documentation:							
Any items above which are "No" or do not meet specif	ications	(i.e. te	mps) mu	st be resol	ved.		
1. Person Contacted:			umber:				
Initiated By:	Da	ate:	-				
Problem:							
Resolution:							
2. Person Contacted:	Ph	none N	umber:				
Initiated By:	_	ate:	_				
Problem:							
Resolution:					(201 1	1369)	
			So	uth Tah	oe Pul	olic Util	lity District
					SP 16	03610	
						016-13:4	

Appendix F.4 – Pilot Testing Water Quality Sampling Results

South Tahoe Public Utility District	Lab ID	: SP 1603611
1275 Meadow Crest Drive	Customer	: 2-11369
South Lake Tahoe, CA 96150		
	Laboratory Report	

Introduction: This report package contains total of 29 pages divided into 3 sections:

Case Narrative	(2 pages) : An overview of the work performed at FGL.
Sample Results	(20 pages) : Results for each sample submitted.
Quality Control	(7 pages) : Supporting Quality Control (QC) results.

Case Narrative

This Case Narrative pertains to the following samples:

Sample Description	Date Sampled	Date Received	FGL Lab ID #	Matrix
Travel Blank	03/30/2016	04/01/2016	SP 1603611-000	LBW
LBWC Well #4 Well Head	03/30/2016	04/01/2016	SP 1603611-001	GW
LBWC Well #4 Before UV	03/30/2016	04/01/2016	SP 1603611-002	GW
LBWC Well #4 After UV 9 gpm @	03/30/2016	04/01/2016	SP 1603611-003	GW
LBWC Well #4 After UV @ 5 gpm	03/30/2016	04/01/2016	SP 1603611-004	GW
LBWC Well #4 After UV @ 7.5 gp	03/30/2016	04/01/2016	SP 1603611-005	GW
LBWC Well #4 Before UV+1.6 Cl2	03/30/2016	04/01/2016	SP 1603611-006	GW
LBWC Well #4 Before UV+1.5 Cl2	03/30/2016	04/01/2016	SP 1603611-007	GW
LBWC Well #4 Sanitary Discharg	03/29/2016	04/01/2016	SP 1603611-008	GW
LBWC Well #4 Pre Filter	03/28/2016	04/01/2016	SP 1603611-009	GW

Sampling and Receipt Information: All samples were received in acceptable condition and within temperature requirements, unless noted on the Condition Upon Receipt (CUR) form. All samples arrived at 4 °C. All samples were prepared and analyzed within the method specified hold time. All samples were checked for pH if acid or base preservation is required (except for VOAs). For details of sample receipt information, please see the attached Chain of Custody and Condition Upon Receipt Form.

Quality Control: All samples were prepared and analyzed according to the following tables:

Organic QC

524.2	04/04/2016:204708 All analysis quality controls are within established criteria, except: The following note applies to Bromomethane (Methyl Bromide), Trichlorofluoromethane F-11, Chloroethane (Ethyl Chloride), Vinyl Chloride: 360 CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.
	04/05/2016:204722 All analysis quality controls are within established criteria.
	04/04/2016:203877 All preparation quality controls are within established criteria.

April 6, 2016	Lab ID	: SP 1603611
South Tahoe Public Utility District	Customer	: 2-11369

Certification:: I certify that this data package is in compliance with ELAP standards, both technically and for completeness, except for any conditions listed above. Release of the data contained in this data package is authorized by the Laboratory Director or his designee, as verified by the following electronic signature.

KD:DMB

Approved By David Terz, B.A., M.B.A.

Digitally signed by David Terz, B.A., M.B.A. Title: QA Director Date: 2016-04-06

Description

Project

South Tahoe Public Utility District

: Travel Blank

: Travel Blank

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-000 Customer ID : 2-11369

Sampled On : March 30, 2016-00:00 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Lab. Blank Water

Sample Result - Organic

Sample Result - Organic								
Constituent	Result	PQL	Units	Note	Sample Preparation		Sample Analysis	
					Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	85.2	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	78.3	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 3 of 29

April 6, 2016 Description : Travel Blank

Lab ID : SP 1603611-000 Customer ID : 2-11369

Sample	Result -	Organic
--------	----------	---------

Constituent	Result	PQL	Units	Note	Sample Preparation		Sample Analysis		
	Result	rųl	Onits	Note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl tert-Butyl Ether		0.5	-						
(ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Methyl tert-Butyl Ether	ND	0.0	-						
(MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tert-amyl-methyl Ether	ND	0.5	-		594.9	0.4/0.4/1.6.0000055	59.4.9	0.4/0.4/1.6.00.4500	
(TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tetrachloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-	ND	0.5	-		524.2	04/04/16 202027	504.0	04/04/16 204700	
Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-001 Customer ID : 2-11369

Sampled On : March 30, 2016-13:30 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 Well Head
Project	: South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample Preparation		Sample Analysis	
	Kesuit	TQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	87.5	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	78.7	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 5 of 29

April 6, 2016 Description : LBWC Well #4 Well Head

Lab ID : SP 1603611-001 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	PQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	42.3	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-002 Customer ID : 2-11369

Sampled On : March 30, 2016-13:40 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 Before UV
Project	: South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample Preparation		Sample Analysis	
	Result	TQL	Onits	1000	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	85.2	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	80.5	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

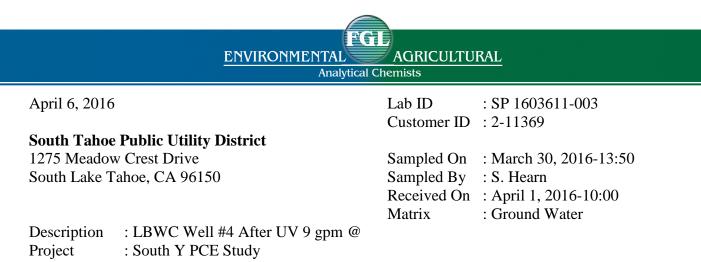
Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 7 of 29


April 6, 2016 Description : LBWC Well #4 Before UV

Lab ID : SP 1603611-002 Customer ID : 2-11369

	D 1/	DOI	TT '	NT (Sample	Preparation	Samp	le Analysis
Constituent	Result	PQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether			-					
(ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
(MTBE)			-		524.2	04/04/10.2050//	524.2	04/04/10.204700
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
(TAME)			-		02112	0.00.1012020077	02.112	0 1/0 1/10/201/00
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	38.3	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-	ND	0.5			524.2	04/04/16 202027	524.2	04/04/16 204700
Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

Samp	le Res	ult -	Organic
------	--------	-------	---------

Constituent	Result	PQL	Units	Note	Sample	Preparation	Sample Analysis		
Constituent	Result	rųl	Units	Note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
4-Bromofluorobenzene [‡]	84.3	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2-Dichlorobenzene-d4 [‡]	77.5	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708	
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
cis-1,2-Dichloroethylene	0.6	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 9 of 29

April 6, 2016 Description : LBWC Well #4 After UV 9 gpm @

Lab ID : SP 1603611-003 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesun	rųl	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
(ETBE)	ND	0.5	ug/L		324.2	04/04/10:2038/7	324.2	04/04/10:204/08
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	35.1	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorotrifluoroethane	ND	0.5	ug/L		324.2	04/04/10.2038/7	324.2	04/04/10.204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-004 Customer ID : 2-11369

Sampled On : March 30, 2016-14:05 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 After UV @ 5 gpm
Project	: South Y PCE Study

Sample	Result -	Organic
--------	-----------------	---------

Constituent	Result	PQL	Units Note		Sample	Preparation	Sample Analysis	
Constituent	Kesuit	TQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	88.6	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	80.3	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 11 of 29

April 6, 2016 Description : LBWC Well #4 After UV @ 5 gpm

Lab ID : SP 1603611-004 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	FQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	31.1	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/10.2038/7	524.2	04/04/10.204/08
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-005 Customer ID : 2-11369

Sampled On : March 30, 2016-14:15 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 After UV @ 7.5 gp
Project	: South Y PCE Study

Sampl	e Result -	• Organic
-------	------------	-----------

Constituent	Result PQL	Units	Note	Sample Preparation		Sample Analysis		
	Kesuit	IQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	87.7	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	77.8	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.6	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 13 of 29

April 6, 2016 Description : LBWC Well #4 After UV @ 7.5 gp

Lab ID : SP 1603611-005 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesult	rųĽ	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	34.1	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.7	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-006 Customer ID : 2-11369

Sampled On : March 30, 2016-15:20 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 Before UV+1.6 Cl2
Project	: South Y PCE Study

Sample	Result -	Organic
--------	-----------------	---------

Constituent	Result PQL	PQL	POL Units N		Sample	Preparation	Sample Analysis	
Constituent	Kesuit	TQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	87.0	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	79.9	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.6	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 15 of 29

April 6, 2016 Description : LBWC Well #4 Before UV+1.6 Cl2

Lab ID : SP 1603611-006 Customer ID : 2-11369

Constituent	Result PQL		L Units		Sample	Sample Preparation		Sample Analysis	
	Result	FQL	Units	Note	Method	Date/ID	Method	Date/ID	
EPA 524.2 ^{VOA:1'3}									
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Tetrachloroethylene	38.4	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722	
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichloroethylene	0.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708	

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-007 Customer ID : 2-11369

Sampled On : March 30, 2016-15:15 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 Before UV+1.5 Cl2
Project	: South Y PCE Study

Sample	Result -	Organic
--------	-----------------	---------

Constituent	Result	Result PQL	Units	Note	Sample Preparation		Sample Analysis	
	Kesuit	IQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	85.5	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	78.4	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 17 of 29

April 6, 2016 Description : LBWC Well #4 Before UV+1.5 Cl2

Lab ID : SP 1603611-007 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Kesun	FQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	36.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.6	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-008 Customer ID : 2-11369

Sampled On : March 29, 2016-13:20 : S. Hearn Sampled By Received On : April 1, 2016-10:00 Matrix : Ground Water

Description	: LBWC Well #4 Sanitary Discharg
Project	: South Y PCE Study

Sample Rest	ılt - Organic
-------------	---------------

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	TQL	Onits	11010	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	87.4	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	79.7	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 19 of 29

April 6, 2016 Description : LBWC Well #4 Sanitary Discharg

Lab ID : SP 1603611-008 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	rųl	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Toluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 \$Surrogate. * PQL adjusted for dilution.

South Tahoe Public Utility District

1275 Meadow Crest Drive South Lake Tahoe, CA 96150

Lab ID : SP 1603611-009 Customer ID : 2-11369

Sampled On : March 28, 2016-05:40 Sampled By : S. Hearn Received On : April 1, 2016-10:00 Matrix : Ground Water

Description : LBWC Well #4 Pre Filter Project : South Y PCE Study

Sample Result - Organic

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
Constituent	Result	TQL	Onits	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
4-Bromofluorobenzene [‡]	86.0	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene-d4 [‡]	78.3	70-130	%		524.2	04/04/16:203877	524.2	04/04/16:204708
Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromodichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromoform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Bromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
sec-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Carbon Tetrachloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
tert-Butanol	ND	2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloroform	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Chloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
4-Chlorotoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromochloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dibromomethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,4-Dichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichlorodifluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,2-Dichloroethylene	0.6	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,2-Dichloroethylene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Dichloromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
2,2-Dichloropropane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 21 of 29

April 6, 2016 Description : LBWC Well #4 Pre Filter

Lab ID : SP 1603611-009 Customer ID : 2-11369

Constituent	Result	PQL	Units	Note	Sample	Preparation	Samp	le Analysis
	Result	FQL	Units	Note	Method	Date/ID	Method	Date/ID
EPA 524.2 ^{VOA:1'3}								
1,3-Dichloropropene (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
cis-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
trans-1,3-Dichloropropene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Di-isopropyl ether (DIPE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl Benzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Ethyl tert-Butyl Ether (ETBE)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Hexachlorobutadiene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Isopropylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
p-Isopropyltoluene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Methyl tert-Butyl Ether (MTBE)	ND	0.2	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Naphthalene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
n-Propylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Styrene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tert-amyl-methyl Ether (TAME)	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2,2-Tetrachloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Tetrachloroethylene	37.6	2.5*	ug/L		524.2	04/04/16:203877	524.2	04/05/16:204722
Toluene	13.3	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,3-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trichlorobenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,1-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2-Trichloroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichloroethylene	0.8	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Trichlorofluoromethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,1,2- Trichlorotrifluoroethane	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,2,4-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
1,3,5-Trimethylbenzene	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Vinyl Chloride	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes (Total)	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes m,p	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Xylenes o	ND	0.5	ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708
Total Trihalomethanes	ND		ug/L		524.2	04/04/16:203877	524.2	04/04/16:204708

Sample Result - Organic

ND=Non-Detected. PQL=Practical Quantitation Limit. Containers: (VOA) VOA Preservatives: HCl pH < 2 ‡Surrogate. * PQL adjusted for dilution.

Lab ID Customer : SP 1603611 : 2-11369

Quality Control - Organic

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,1,1,2-Tetrachloroethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
1,1,1,2 10000000000000000000000000000000	02.112	0 1/0 1/10120200/ / /110	MS	ug/L	10.00	59.8 %	12-178	
		(CC 1680990-001)	MSD	ug/L	10.00	64.3 %	12-178	
		````	MSRPD	ug/L	10.00	7.2%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.1 %	70-130	
1,1,1-Trichloroethane(TCA)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	62.4 %	9-176	
		(CC 1680990-001)	MSD	ug/L	10.00	67.0 %	9-176	
			MSRPD	ug/L	10.00	7.1%	≤33	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	96.0 %	70-130	
1,1,2,2-Tetrachloroethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	69.7 %	23-180	
		(CC 1680990-001)	MSD	ug/L	10.00	76.0 %	23-180	
			MSRPD	ug/L	10.00	8.6%	≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	110 %	70-130	
1,1,2-Trichloroethane	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
	1	(00.1(00000.001)	MS	ug/L	10.00	61.7 %	25-173	
		(CC 1680990-001)	MSD	ug/L	10.00	68.4 %	25-173	
	524.2	04/04/16 2047001/00	MSRPD	ug/L	10.00	10.3%	≤29	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
1,1-Dichloroethane	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(CC 1(20000 001)	MS	ug/L	10.00	59.9 %	15-161	
		(CC 1680990-001)	MSD	ug/L	10.00	64.7 %	15-161	
	524.2	04/04/16 2047003/00	MSRPD	ug/L	10.00	7.8%	<u>≤</u> 36	
110.11 1.1	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	95.5 %	70-130	
1,1-Dichloroethylene	524.2	04/04/16:203877VRG		ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00 10.00	56.4 % 63.9 %	0-162 0-162	
		(CC 1080990-001)	MSRPD	ug/L ug/L	10.00	12.4%		
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	90.1 %	70-130	
1,1-Dichloropropene	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	90.1 %	<0.5	
1,1-Diemotopiopene	524.2	04/04/10.2038//VKO	MS	ug/L ug/L	10.00	57.7 %	0-171	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	62.6 %	0-171	
		(ee 1000))0 001)	MSRPD	ug/L ug/L	10.00	8.1%	≤31	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	88.8 %	70-130	
1,2,3-Trichlorobenzene	524.2	04/04/16:203877VRG		ug/L	10.00	ND	< 0.5	
	524.2	04/04/10.2050/// VIC	MS	ug/L	10.00	66.0 %	14-181	
		(CC 1680990-001)	MSD	ug/L	10.00	69.3 %	14-181	
		· · · · · · · · · · · · · · · · · · ·	MSRPD	ug/L	10.00	4.9%	≤34	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	104 %	70-130	
1,2,4-Trichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.8 %	10-180	
	1	(CC 1680990-001)	MSD	ug/L	10.00	66.4 %	10-180	
			MSRPD	ug/L	10.00	4.0%	≤32	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	99.2 %	70-130	
1,2,4-Trimethylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
	1		MS	ug/L	10.00	44.4 %	2-192	
	1	(CC 1680990-001)	MSD	ug/L	10.00	49.4 %	2-192	
		1	MSRPD	ug/L	10.00	10.8%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	70-130	
1,2-Dichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
	1		MS	ug/L	10.00	63.3 %	13-191	
	1	(CC 1680990-001)	MSD	ug/L	10.00	70.3 %	13-191	
			MSRPD	ug/L	10.00	10.5%	≤35	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	

Corporate Offices & Laboratory 853 Corporation Street Santa Paula, CA 93060 TEL: (805)392-2000 Env FAX: (805)525-4172 / Ag FAX: (805)392-2063 FAX: (209)942-0423 CA ELAP Certification No. 1573

Office & Laboratory 2500 Stagecoach Road Stockton, CA 95215 TEL: (209)942-0182

Office & Laboratory 563 E. Lindo Avenue Chico, CA 95926 TEL: (530)343-5818 FAX: (530)343-3807

Office & Laboratory 3442 Empresa Drive, Suite D San Luis Obispo, CA 93401 TEL: (805)783-2940 FAX: (805)783-2912

Page 23 of 29

#### : SP 1603611 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
1,2-Dichlorobenzene-d4	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	79.6 %	70-130	
1,2 Diemorobenzene u+	524.2	04/04/10.2050///VRO	MS	ug/L	10.00	89.8 %	70-130	
		(CC 1680990-001)	MSD	ug/L	10.00	92.6 %	70-130	
			MSRPD	ug/L	10.00	3.1%	≤20	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	94.9 %	70-130	
1,2-Dichloroethane (EDC)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	67.2 %	18-162	
		(CC 1680990-001)	MSD	ug/L	10.00	72.2 %	18-162	
			MSRPD	ug/L	10.00	7.2%	≤33	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	107 %	70-130	
1,2-Dichloropropane	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
		(CC 1(20000, 001)	MS MSD	ug/L	10.00	65.0 %	10-163	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	70.2 % 7.7%	10-163 ≤34	
	524.2	04/04/16:204708VRG	CCV		10.00	105 %		
1,3,5-Trimethylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	105 % ND	70-130 <0.5	
1,5,5-11111eurytoenzene	524.2	04/04/10.2038//VKG	MS	ug/L ug/L	10.00	52.0 %	<0.5 0-210	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	52.0 % 57.8 %	0-210	
		(000))0 001)	MSRPD	ug/L	10.00	10.7%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	70-130	
1.3-Dichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.7 %	17-182	
		(CC 1680990-001)	MSD	ug/L	10.00	69.5 %	17-182	
			MSRPD	ug/L	10.00	8.7%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	101 %	70-130	
1,3-Dichloropropane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	69.9 %	0-178	
		(CC 1680990-001)	MSD	ug/L	10.00	74.7 %	0-178	
			MSRPD	ug/L	10.00	6.6%	≤29	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	112 %	70-130	
1,4-Dichlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
		(CC 1(20000, 001)	MS MSD	ug/L	10.00	64.1 %	19-183	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	69.5 % 8.1%	19-183 ≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	104 %	<u>≤</u> 37 70-130	
2,2-Dichloropropane	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
2,2-Diemoropropane	524.2	04/04/10.2038//VKO	MS	ug/L ug/L	10.00	51.3 %	0-288	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	57.7 %	0-288	
		(	MSRPD	ug/L	10.00	11.8%	≤33	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	80.9 %	70-130	
2-Chlorotoluene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	65.3 %	17-180	
		(CC 1680990-001)	MSD	ug/L	10.00	71.6 %	17-180	
			MSRPD	ug/L	10.00	9.1%	≤38	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
4-Bromofluorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	87.7 %	70-130	
		(0.0.1.000000.00.00	MS	ug/L	10.00	93.3 %	70-130	
		(CC 1680990-001)	MSD	ug/L	10.00	95.2 %	70-130	
	524.2	04/04/16 00 4700175 0	MSRPD	ug/L	10.00	2.0%	<u>≤30</u>	
4-Bromofluorobenzene (BFB)	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	95.3 %	70-130	
4-Chlorotoluene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS MSD	ug/L	$10.00 \\ 10.00$	63.3 % 70.1 %	11-177 11-177	
		(CC 1000990-001)	MSD MSRPD	ug/L ug/L	10.00	10.1%	≤41	
	<u> </u>		MDKI D	ug/L	10.00	10.270	+1	

#### : SP 1603611 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
4-Chlorotoluene	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	104 %	70-130	
Benzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	61.3 %	12-158	
		(CC 1680990-001)	MSD	ug/L	10.00	67.3 %	12-158	
			MSRPD	ug/L	10.00	9.3%	<u>≤</u> 36	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.2 %	70-130	
Bromobenzene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00 10.00	61.2 % 65.9 %	23-177 23-177	
		(CC 1080990-001)	MSRPD	ug/L ug/L	10.00	7.3%	$\leq 40$	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	97.9 %	70-130	
Bromochloromethane	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
	02.112	0 1/0 1/10/2000/ / / 100	MS	ug/L	10.00	57.9 %	4-186	
		(CC 1680990-001)	MSD	ug/L	10.00	62.5 %	4-186	
			MSRPD	ug/L	10.00	7.7%	≤30	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.2 %	70-130	
Bromodichloromethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	63.5 %	11-164	
		(CC 1680990-001)	MSD	ug/L	10.00	67.7 %	11-164	
	524.2	04/04/16:204708VRG	MSRPD CCV	ug/L	10.00 10.00	6.5% 97.8 %	≤34 70-130	
Promoform	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	97.8 % ND		
Bromoform	524.2	04/04/10:2038//VKG	MS	ug/L ug/L	10.00	53.7 %	<0.5 0-235	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	62.0 %	0-235	
		(000))0001)	MSRPD	ug/L	10.00	14.4%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	78.8 %	70-130	
Bromomethane (Methyl Bromide)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
× •			MS	ug/L	10.00	68.4 %	0-196	
		(CC 1680990-001)	MSD	ug/L	10.00	65.9 %	0-196	
			MSRPD	ug/L	10.00	3.7%	≤40	
	524.2	04/04/16:204708VRG		ug/L	10.00	141 %	70-130	360
Carbon Tetrachloride	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
		(00.1(00000.001)	MS	ug/L	10.00	59.5 %	5-175	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	64.2 % 7.5%	5-175 ≤32	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	89.4 %	<u>≤32</u> 70-130	
Chlorobenzene	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	89.4 % ND	<0.5	
	524.2	0+/0+/10.2030//VKU	MS	ug/L ug/L	10.00	63.8 %	<0.3 14-175	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	69.5 %	14-175	
		(	MSRPD	ug/L	10.00	8.6%	≤35	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	105 %	70-130	
Chloroethane (Ethyl Chloride)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
· •			MS	ug/L	10.00	78.5 %	0-184	
		(CC 1680990-001)	MSD	ug/L	10.00	73.0 %	0-184	
			MSRPD	ug/L	10.00	7.2%	<u>≤</u> 40	
~	524.2	04/04/16:204708VRG		ug/L	10.00	156 %	70-130	360
Chloroform	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
		(00.1(00000.001)	MS	ug/L	10.00	65.2 %	15-163	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	69.7 % 6.8%	15-163 <36	
	524.2	04/04/16:204708VRG		ug/L ug/L	10.00	102 %	≤36 70-130	
Chloromethane(Methyl Chloride)	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	102 % ND	<0.5	
Chloromethane (methyl Chloride)	524.2	0+/0+/10.2030//VKO	MS	ug/L ug/L	10.00	55.6 %	<0.3 0-224	
	1	(CC 1680990-001)	MSD	ug/L ug/L	10.00	56.4 %	0-224	

#### : SP 1603611 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Chloromethane(Methyl Chloride)	524.2	04/04/16:203877VRG	MSRPD	ug/L	10.00	1.5%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	118 %	70-130	
cis-1,2-Dichloroethylene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
· · ·			MS	ug/L	10.00	61.1 %	16-172	
		(CC 1680990-001)	MSD	ug/L	10.00	66.1 %	16-172	
			MSRPD	ug/L	10.00	7.9%	≤34	
	524.2			ug/L	10.00	93.8 %	70-130	
cis-1,3-Dichloropropene	524.2	04/04/16:203877VRG		ug/L		ND	< 0.5	
			MS	ug/L	10.00	58.4 %	5-158	
		(CC 1680990-001)	MSD	ug/L	10.00	62.8 %	5-158	
	524.2	04/04/16/204709VDC	MSRPD	ug/L	10.00	7.3%	≤38 70.120	
D'1 11 4	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	91.4 %	70-130	
Dibromochloromethane	524.2	04/04/16:203877VRG	Blank MS	ug/L ug/L	10.00	ND 60.1 %	<0.5 1-180	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	67.0 %	1-180	
		(ee 1000))0-001)	MSRPD	ug/L ug/L	10.00	10.8%	≤34	
	524.2	04/04/16:204708VRG		ug/L	10.00	89.9 %	70-130	
Dibromomethane	524.2	04/04/16:203877VRG	Blank	ug/L ug/L	10.00	ND	<0.5	
Diotomonicularie	524.2	04/04/10.2050/77710	MS	ug/L ug/L	10.00	59.5 %	11-168	
		(CC 1680990-001)	MSD	ug/L	10.00	64.3 %	11-168	
		`````	MSRPD	ug/L	10.00	7.8%	≤28	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	70-130	
Dichlorodifluoromethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	59.7 %	0-334	
		(CC 1680990-001)	MSD	ug/L	10.00	58.4 %	0-334	
			MSRPD	ug/L	10.00	2.1%	≤39	
	524.2	04/04/16:204708VRG		ug/L	10.00	119 %	70-130	
Dichloromethane	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	58.5 %	20-157	
		(CC 1680990-001)	MSD	ug/L	10.00	64.6 %	20-157	
	524.2	04/04/16 000055100 0	MSRPD	ug/L	10.00	9.8%	≤36	
Ethyl tert-Butyl Ether	524.2	04/04/16:203877VRG		ug/L	10.00	ND 72.1 %	<3	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00	72.1 % 78.9 %	11-165 11-165	
		(CC 1080990-001)	MSRPD	ug/L ug/L	10.00	0.67	≤3	
	524.2	04/04/16:204708VRG		ug/L ug/L	10.00	114 %	70-130	
Ethylbenzene	524.2			ug/L ug/L	10.00	ND	<0.5	
Entry to enterne	521.2	0 1/0 1/10.205077 7100	MS	ug/L	10.00	59.7 %	9-174	
		(CC 1680990-001)	MSD	ug/L	10.00	67.5 %	9-174	
		(,	MSRPD	ug/L	10.00	12.2%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	101 %	70-130	
Freon-11	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
	1		MS	ug/L	10.00	69.8 %	0-232	
	1	(CC 1680990-001)	MSD	ug/L	10.00	75.2 %	0-232	
	ļ		MSRPD	ug/L	10.00	7.4%	≤35	
Hexachlorobutadiene	524.2	04/04/16:203877VRG		ug/L		ND	< 0.5	
	1		MS	ug/L	10.00	66.5 %	14-200	
	1	(CC 1680990-001)	MSD	ug/L	10.00	68.2 %	14-200	
	50.1.0	04/04/16 00 1000100 0	MSRPD	ug/L	10.00	2.6%	<u>≤40</u>	
r 1.5.4	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	93.9 %	70-130	
Isopropyl Ether	524.2	04/04/16:203877VRG		ug/L	10.00	ND	<3	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00 10.00	74.7 % 82.4 %	8-165 8-165	

: SP 1603611 : 2-11369

Constituent	Method	Date/ID	Туре	Units	Conc.	QC Data	DQO	Note
Organic								
Isopropyl Ether	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	120 %	70-130	
Isopropylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
	02.112	0 1/0 1/101202077 7110	MS	ug/L	10.00	64.1 %	4-159	
		(CC 1680990-001)	MSD	ug/L	10.00	69.9 %	4-159	
			MSRPD	ug/L	10.00	8.7%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	102 %	70-130	
Methyl tert-Butyl Ether	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	124 %	70-130	
Methyl tert-Butyl Ether (MTBE)	524.2	04/04/16:203877VRG	Blank	ug/L		ND	<1.0	
			MS	ug/L	10.00	77.6 %	11-168	
		(CC 1680990-001)	MSD	ug/L	10.00	83.9 %	11-168	
	524.2		MSRPD	ug/L	10.00	7.8%	≤29	
Methylene Chloride	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	97.8 %	70-130	
Naphthalene	524.2	04/04/16:203877VRG		ug/L	10.00	ND	<0.5	
		(CC 1620000 001)	MS	ug/L	10.00	60.7 %	0-189	
		(CC 1680990-001)	MSD MSRPD	ug/L ug/L	10.00 10.00	65.7 % 7.9%	0-189 ≤32	
	524.2	04/04/16:204708VRG	CCV		10.00	97.2 %	<u>≤32</u> 70-130	
n-Butylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	97.2 % ND	<0.5	
п-витупрениене	524.2	04/04/10:2038//VKG	MS	ug/L ug/L	10.00	65.0 %	<0.5 4-186	
		(CC 1680990-001)	MSD	ug/L ug/L	10.00	69.8 %	4-186	
		(ee 1000))0 001)	MSRPD	ug/L	10.00	7.2%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	100 %	70-130	
n-Propylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	< 0.5	
in riopytoenzene	521.2	0 1/0 1/10.2050/ / / 10	MS	ug/L	10.00	65.1 %	0-174	
		(CC 1680990-001)	MSD	ug/L	10.00	70.0 %	0-174	
		` '	MSRPD	ug/L	10.00	7.2%	≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
p-Isopropyltoluene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	61.1 %	0-193	
		(CC 1680990-001)	MSD	ug/L	10.00	66.4 %	0-193	
			MSRPD	ug/L	10.00	8.3%	≤40	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	99.1 %	70-130	
sec-Butylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
			MS	ug/L	10.00	65.7 %	0-177	
		(CC 1680990-001)	MSD	ug/L	10.00	72.2 %	0-177	
	524.2	04/04/16 0047003/000	MSRPD	ug/L	10.00	9.5%	<u>≤40</u>	
a	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	
Styrene	524.2	04/04/16:203877VRG	Blank	ug/L	10.00	ND	<0.5	
		(CC 1680990-001)	MS MSD	ug/L ug/L	10.00 10.00	32.6 % 39.6 %	0-198 0-198	
		(CC 1080990-001)	MSD	ug/L ug/L	10.00	19.3%	0-198 ≤37	
	524.2	04/04/16:204708VRG	CCV	ug/L ug/L	10.00	73.7 %	70-130	
TAME	524.2	04/04/16:203877VRG		ug/L ug/L	10.00	ND	<3	
IANE	524.2	0+/0+/10.2030//vKU	MS	ug/L ug/L	10.00	69.6 %	<5 15-162	
	1	(CC 1680990-001)	MSD	ug/L ug/L	10.00	75.6 %	15-162	
	1	(22 2000000000)	MSRPD	ug/L	10.00	0.60	≤3	
	524.2	04/04/16:204708VRG	CCV	ug/L	10.00	111 %	70-130	
tert-Butanol	524.2	04/04/16:203877VRG		ug/L		ND	<2	
-			MS	ug/L	50.00	81.8 %	0-198	
	1	(CC 1680990-001)	MSD	ug/L	50.00	71.7 %	0-198	
			MSRPD	ug/L	10.00	13.1%	≤39	
	524.2	04/04/16:204708VRG	CCV	ug/L	50.00	91.3 %	70-130	
tert-Butylbenzene	524.2	04/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		1	MS	ug/L	10.00	66.3 %	9-179	

Quality Control - Organic Т

: SP 1603611 : 2-11369

524.2 04. Tetrachloroethylene (PCE) 524.2 04. 524.2 04. (() 524.2 04. () 524.2 04. () 524.2 04. () 524.2 04. () Toluene 524.2 04. trans-1,2-Dichloroethylene 524.2 04. trans-1,3-Dichloropropene 524.2 04. Trichloroethylene (TCE) 524.2 04. Trichlorofluoromethane F-11 524.2 04. Trichlorofluoromethane F-11 524.2 04. Vinyl Chloride 524.2 04. Vinyl Chloride 524.2 04. Vinyl Chloride 524.2 04. () $()$ $()$ 524.2 04. $()$ 524.2 $04.$ $()$ 524.2 $04.$ $()$ 524.2 $04.$ $()$ 524.2 $04.$ $()$ </th <th></th> <th></th> <th></th> <th></th> <th></th> <th>DQO</th> <th>Note</th>						DQO	Note
524.2 04. Tetrachloroethylene (PCE) 524.2 04. 524.2 04. 524.2 04. 524.2 04. 524.2 04. 524.2 04. 524.2 04. 524.2 04. (0) 524.2 04. (1) 524.2 04. (1) 524.2 04. (1) 524.2 04. (1) 524.2 04. (1) 524.2 04. (1) (1) (1) (1) (2) (2) (1) (2) (2) (1) (2) (2) (2) (2) (2) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2)							
Tetrachloroethylene (PCE) 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , (0) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2)	tert-Butylbenzene 524.2 (CC 1680990-001) M		ug/L	10.00	72.3 %	9-179	
Tetrachloroethylene (PCE) 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , 524.2 04 , (0) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) 524.2 04 , (1) <td< td=""><td>ug/L</td><td>10.00</td><td>8.7%</td><td>≤38</td><td></td></td<>			ug/L	10.00	8.7%	≤38	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	/04/16:204708VRG	CCV	ug/L	10.00	102 %	30-130	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		MS	ug/L	10.00	56.3 %	14-186	
524.2 04. Toluene 524.2 04. (1) 524	CC 1680990-001)	MSD	ug/L	10.00	60.1 %	14-186	
524.2 04. Toluene 524.2 04. (1) 524		MSRPD	ug/L	10.00	6.5%	≤33	
Toluene 524.2 04, 524.2 04, (1) 524.2 04, trans-1,2-Dichloroethylene 524.2 04, (1) 524.2 04, (/04/16:204708VRG	CCV	ug/L	10.00	89.9 %	70-130	
Image: space	/05/16:204722VRG	CCV	ug/L	10.00	76.1 %	70-130	
524.2 04 trans-1,2-Dichloroethylene 524.2 04 (0 (0 (0 524.2 04 (0 trans-1,3-Dichloropropene 524.2 04 Trichloroethylene (TCE) 524.2 04 Trichlorofluoromethane F-11 524.2 04 Trichlorofluoromethane F-11 524.2 04 Trichlorotrifluoroethane F-11 524.2 04 Vinyl Chloride 524.2 04 Xylenes m,p 524.2 04	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
524.2 04 trans-1,2-Dichloroethylene 524.2 04 (0 524.2 04 trans-1,3-Dichloropropene 524.2 04 Trichloroethylene (TCE) 524.2 04 Trichlorofluoromethane F-11 524.2 04 Trichlorofluoromethane F-11 524.2 04 Trichlorofluoromethane F-11 524.2 04 Vinyl Chloride 524.2 04 Xylenes m,p 524.2 04		MS	ug/L	10.00	47.9 %	3-174	
trans-1,2-Dichloroethylene 524.2 04, 524.2 04, (1) 524.2 04, trans-1,3-Dichloropropene 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (2) 524.2 04, (2) 524.2 04,	CC 1680990-001)	MSD	ug/L	10.00	67.3 %	3-174	
trans-1,2-Dichloroethylene 524.2 04, 524.2 04, (1) 524.2 04, trans-1,3-Dichloropropene 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (2) 524.2 04, (2) 524.2 04,		MSRPD	ug/L	10.00	24.3%	≤37	
1 524.2 04, trans-1,3-Dichloropropene 524.2 04, 524.2 04, ((/04/16:204708VRG	CCV	ug/L	10.00	97.5 %	30-130	
524.2 04, trans-1,3-Dichloropropene 524.2 04, (1) 524.2 04, (2) 524.2 04,	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
524.2 04, trans-1,3-Dichloropropene 524.2 04, (1) 524.2 04, (2) 524.2 04,		MS	ug/L	10.00	56.1 %	5-165	
trans-1,3-Dichloropropene 524.2 04, 524.2 04, 524.2 04, Trichloroethylene (TCE) 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04, 1 524.2 04,	CC 1680990-001)	MSD	ug/L	10.00	60.2 %	5-165	
trans-1,3-Dichloropropene 524.2 04, 524.2 04, Trichloroethylene (TCE) 524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-11 524.2 04, Vinyl Chloride 524.2 04, Vinyl Chloride 524.2 04, Xylenes m,p 524.2 04,		MSRPD	ug/L	10.00	7.2%	≤40	
Trichloroethylene (TCE) 524.2 04, 524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((Xylenes m,p 524.2 04,	/04/16:204708VRG	CCV	ug/L	10.00	88.8 %	70-130	
524.2 04, Trichloroethylene (TCE) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (2) 524.2 04, (2) 524.2 04, (2) 524.2 04, (2) 524.2 04,	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
524.2 04, Trichloroethylene (TCE) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (2) 524.2 04, (2) 524.2 04, (2) 524.2 04, (2) 524.2 04,		MS	ug/L	10.00	52.0 %	0-169	
Trichloroethylene (TCE) 524.2 04, 524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, Vinyl Chloride 524.2 04, Vinyl Chloride 524.2 04, Xylenes m,p 524.2 04,	CC 1680990-001)	MSD	ug/L	10.00	58.9 %	0-169	
Trichloroethylene (TCE) 524.2 04, 524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((524.2 04, ((Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, Vinyl Chloride 524.2 04, Vinyl Chloride 524.2 04, Xylenes m,p 524.2 04,		MSRPD	ug/L	10.00	12.4%	≤31	
Trichlorofluoromethane F-11 524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (u 524.2 04, Vinyl Chloride 524.2 04, (u 524.2 04, (u 524.2 04, Vinyl Chloride 524.2 04, (u 524.2 04, Xylenes m,p 524.2 04,	/04/16:204708VRG	CCV	ug/L	10.00	82.5 %	70-130	
524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (u 524.2 04, Xylenes m,p 524.2 04,	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
524.2 04, Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (u 524.2 04, Xylenes m,p 524.2 04,		MS	ug/L	10.00	60.1 %	11-167	
Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (0 524.2 04, Vinyl Chloride 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (2) 524.2 04, (2) 524.2 04, (2) 524.2 04,	CC 1680990-001)	MSD	ug/L	10.00	64.8 %	11-167	
Trichlorofluoromethane F-11 524.2 04, Trichlorotrifluoroethane F-113 524.2 04, (0 524.2 04, Vinyl Chloride 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (1) 524.2 04, (2) 524.2 04, (2) 524.2 04, (2) 524.2 04,		MSRPD	ug/L	10.00	7.6%	≤35	
Trichlorotrifluoroethane F-113 524.2 04. 524.2 04. Vinyl Chloride 524.2 04. 524.2 04. ((524.2 04. ((524.2 04. ((524.2 04. ((524.2 04. ((Xylenes m,p 524.2 04.	/04/16:204708VRG	CCV	ug/L	10.00	92.4 %	70-130	
Vinyl Chloride 524.2 04, Vinyl Chloride 524.2 04, (0 524.2 04, Xylenes m,p 524.2 04,	/04/16:204708VRG	CCV	ug/L	10.00	149 %	70-130	360
524.2 04, Vinyl Chloride 524.2 04, (0 524.2 04, Xylenes m,p 524.2 04,	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
524.2 04, Vinyl Chloride 524.2 04, (0 524.2 04, Xylenes m,p 524.2 04,		MS	ug/L	10.00	77.1 %	0-183	
Vinyl Chloride 524.2 04, (1) 524.2 04, Xylenes m,p 524.2 04,	CC 1680990-001)	MSD	ug/L	10.00	83.7 %	0-183	
Vinyl Chloride 524.2 04, (1) 524.2 04, Xylenes m,p 524.2 04,		MSRPD	ug/L	10.00	8.2%	≤33	
524.2 04 Xylenes m,p 524.2 04	/04/16:204708VRG	CCV	ug/L	10.00	118 %	70-130	
524.2 04. Xylenes m,p 524.2 04.	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
524.2 04. Xylenes m,p 524.2 04.		MS	ug/L	10.00	69.9 %	0-208	
Xylenes m,p 524.2 04,	CC 1680990-001)	MSD	ug/L	10.00	70.5 %	0-208	
Xylenes m,p 524.2 04,		MSRPD	ug/L	10.00	0.9%	≤40	
	/04/16:204708VRG	CCV	ug/L	10.00	145 %	30-130	360
	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
(1		MS	ug/L	20.00	55.8 %	0-193	
(CC 1680990-001)	MSD	ug/L	20.00	61.7 %	0-193	
		MSRPD	ug/L	10.00	10.1%	≤37	
	/04/16:204708VRG	CCV	ug/L	20.00	97.1 %	70-130	
Xylenes o 524.2 04/	/04/16:203877VRG	Blank	ug/L		ND	< 0.5	
		MS	ug/L	10.00	58.7 %	0-188	
(1	CC 1680990-001)	MSD	ug/L	10.00	65.4 %	0-188	
		MSRPD	ug/L	10.00	10.8%	≤36	
524.2 04/	/04/16:204708VRG	CCV	ug/L	10.00	103 %	70-130	

Quality Control - Organic

: Method Blank - Prepared to verify that the preparation process is not contributing contamination to the samples. : Matrix Spikes - A random sample is spiked with a known amount of analyte. The recoveries are an indication of how that sample Blank MS matrix affects analyte recovery.

April 6, 2016	Lab ID	: SP 1603611
South Tahoe Public Utility District	Customer	: 2-11369

Definition	
MSD	: Matrix Spike Duplicate of MS/MSD pair - A random sample duplicate is spiked with a known amount of analyted. The recoveries are an indication of how that sample matrix affects analyte recovery.
MSRPD	: MS/MSD Relative Percent Difference (RPD) - The MS relative percent difference is an indication of precision for the preparation and analysis.
ND	: Non-detect - Result was below the DQO listed for the analyte.
DQO	: Data Quality Objective - This is the criteria against which the quality control data is compared.
Explanation	
360	: CCV above Acceptance Range (AR). Samples which were non detect for this analyte were accepted.

SOUTH TAHOE PUBLIC UTILITY DISTRICT

160361) CHAIN OF CUSTODY

Concentration Sumple finances Sumple finances Sumple finances Sumple finances Label Prosect Source Stay Date Ten Prosect Source State Name Sumple Stay Date Ten Prosect State State<	South Tahoe Public L 1275 Meadow Crest South Lake Tahoe, C Phone: (530)-543-62	Drive CA 96150 31	Lab Sent to: Sampler:	FG				Analyses Red	auested		Turnaround Time Standard 24 Hr
AGSD38A LBay, III(1#4 IDE(1 Acd. d A)30/16, 1330 4*/4C1 (XW) 3 Ack 50364 LBay, III(1#4 Before O 3/30/16, 1330 4W/1 3 Ack 50364 LBay, III(1#4 Before O 3/30/16, 1330 4W/1 3 Ack 50364 LBay, III(1#4 Actor Y S/30/16, 1330 4W/1 3 Ack 50364 LBay, III(1#4 Actor Y S/30/16, 1330 4W/1 3 Ack 50374 LBay, III(1#4 Actor Y S/30/16, 1520 GW 3 Ack 503747 LBay, III(1#4 Actor Y S/30/16, 1520 GW 3 Ack 503747 LBW, III(1#4 Actor Y S/30/16, 1520 GW 3 Ack 503747 LBW, IIII(1#4 Actor Y S/314/16, 105 GUV 3 Ack 50374 LBW, IIII, III, Ack, III, III, III, Ack, III, III, III, III, IIII, III, IIII, IIII, IIII, IIII, IIII, IIII, IIII, IIIII, IIIII, IIIIII		Project South Y PCF Study		Sample Inf	omation		524 + 0X			đ	48 Hr Other
Act 503f9 LRWC UVILA44 Sefere UV 03/30/16 L34D GRU / 3 Act 50390 LRWC UVILA44 After UV 03/30/16 L370 GRU / 3 Act 50390 LRWC UVILA44 After UV 03/30/16 L370 GRU / 3 Act 50391 LRWC UVILA44 After UV of 5 gpm 03/30/16 L405 GrW 3 Act 50392 LRWC UVILA44 After UV of 7,5 gpm 03/30/16 L405 GrW 3 Act 50393 LRWC UVILA44 Refore UV + 1, 6 C1 03/30/16 L405 GrW 3 Act 50393 LRWC UVILA44 Refore UV + 1, 5C 12 03/30/16 L350 GrW 3 Act 50394 LRWC UVILA44 After UV + 1, 5C 12 03/30/16 L350 GrW 3 Act 50395 IRUL UM JaitAry Jucchard 03/30/16 L350 GrW 3 3 Act 50396 Trip & Rowk JaitAry Jucchard 03/30/16 L320 GrW 3 3 Act 50397 LRWC UVILA4 Free Filter 03/30/16 L320 GrW 3 3			1 /	1330	4°/14C1	1xW	1				inciriains.
Alc:5039.0 L&U: LWIL#4 ACC: UV No. 03/80/16 1370 CeU1 2 Alc:5039.1 L&U: LWIL#4 AC: To 34. AC: To 34. AC: To 39. Ceux 3 Alc:5039.1 L&U: LWIL#4 AC: To 34. AC: To 34. Ceux 3 3 Alc:5039.2 L&U: LWIL#4 AC: To 34. Ceux 140. 152.0 Ceux 3 Alc:5039.3 LBW: LWIL#4 Before: LV+1.6 L2 03/80/16 152.0 Ceux 3 Alc:5039.3 LBW: LWIL#4 Alc: Coux Alc: Sold (L. 152.0) Ceux 3 3 Alc:5039.4 LBW: LWIL#4 Alf: Coux Sold (L. 152.0) Ceux 3 3 Alc:5039.4 LBW: LWIL#4 Alf: Coux Sold (L. 152.0) Ceux 3 3 Alc:5039.4 To intervertise To intervertise Courteents Sold Alf: 4 Courteents 3 3 Alc: Sold Alf: State Write-On form to report results of Potable Water Weils Signature Alc: V Alc: V Alc: V Signature Signature Signature Signature Signature			123/30/16		1					3	
ACC 50391 LBW - (Dell #4) After UN e Sign 03/30/16 14/05 GW 3 After 50392 LBW - (Dell #4) After UN e Fisher 03/80/16 14/15 GW 3 After 50392 LBW - (Dell #4) After UN e Fisher 03/80/16 14/15 GW 3 After 50393 LBW - (Dell #4) After UN e Fisher 03/80/16 1520 GW 3 After 50393 LBW - UN ell #4) After UN + 1.5 C 12 1530/16 1520 GW 3 After 50394 LBW - UN ell #4 After UN + 1.5 C 12 1530/16 1520 GW 3 After 50394 LBW - UN ell #4 After UN + 1.5 C 12 1330 GU U 3 After 50394 Trip Black Daildary Duichatte 0314-16 1330 GU U 3 After 50397 HUBUE 100.5 upl. UN ell #4 Pre fillet 03-02-16 GU U 3 After 50397 LBWC 1001/44 Pre fillet 03-02-16 Stol U GU U 3 After 50397 LBWC 1001/64 Pre fillet 03-02-16 Stol U GU U 3 After 50397 LBWC 1001/64 Pre										3	
AG:50392 LGWC (U/bil) ^{#/d} AFter U/V e 7, 5 a ph 03/20/L6 14/5 GW 3 AG:50393 LBWC (U/bil) ^{#/d} AFter U/V + 1.5 C \ 2 03/20/L6 15212 GW 3 AG:50393 LBWC (U/bil) ^{#/d} AFter U/V + 1.5 C \ 2 03/20/L6 15212 GW 3 AG:50394 LBWC (U/bil) ^{#/d} After (U/V + 1.5 C \ 2 03/20/L6 15212 GW 3 AG:50394 LBWC (U/bil) ^{#/d} After (U/V + 1.5 C \ 2 03/20/L6 1300 GUW 3 After 50394 JBUC (U/bil) ^{#/d} Jacktage d334-16 1340 GUW 3 3 After 503976 Trip Ble-After D3-30-16 - (GUW) 3 3 After 503977 LBWC (U/bil) ^{#/d} Price Fillet 03-20/-16 5+00 GWW 3 3 After 503977 LBWC (U/bil) ^{#/d} Price Fillet 03-20/-16 5+00 GWW 3 3 3 After 503977 LBWC (U/bil) ^{#/d} Price Fillet 03-20/-16 5+00 GWW 3 3 3 3 3 3 3 3						aw	1			3	
A & 6 0393 LBW L (Well #4 B efore (W/+1,6 €1,2 03/30/16 15215) G W 3 A G 50 394 LBW L (Well #4 A ffer (W+1,5 € 1,2 03/30/16 1535) G W 3 A G 50 394 LBW L (Well #4 A ffer (W+1,5 € 1,2 03/30/16 1535) G W 3 A G 50 3945 JBW L UM Saintary Duccharge 03319+16 1300 G W 3 A G 50 3945 JBW L UM Saintary Duccharge 03319+16 1300 G W 3 A G 50 3945 JBW L UM B G a A k D3-30+16			1 7 /			GW				3	
Afasto 39.5 10 WL Ba Jauitary Juschwige 03:14-16 130 GUU 3 Afasto 39.5 10 WL Ba Jauitary Juschwige 03:14-16 130 GUU 3 Afasto 39.6 Trip 8 Lenk 03-30-16 - GUU 3 Afasto 39.7 10 WL Ba 97-30-16 - GUU 3 Afasto 39.7 10 WL Ba Processon 03-37-16 - GUU 3 Afasto 39.7 10 WL Ba Processon 03-37-16 - GUU 3 Comments: - - Guultary - - GuU 3 - - - - - - GuU - - -	, , , , , , , , , , , , , , , , , , ,		03/30/16	15212		GW				3	
Att 50 39 6 Trip & & & & & & & & & & & & & & & & & & &	AG. 50.39.4	LOWC Well #4 Affer W+1.5C12	03/30/16	2 1575		GW	1			3	
Att 50 39 6 Trip & & & & & & & & & & & & & & & & & & &	AG\$50395	IBWC De Saiitary Discharge	03-19-16	1310		GW	1				
Comments: Image: Comment in the image: Com	AG1.5039.6	Trip Black	03-30-1k			all	1				
 Report MTBE to 0.5 µg/L. Note any detection of MTBE ≥ 0.2 µg/L Analyze Travel and Field Blanks only if VOCs detected in samples. Use Calif State Write-On form to report results of Potable Water Wells Please Return all STPUD ice chests & Blue Ice. Belinquished by: Date: O3 * 31-16 Time Time	No 50397	LBWC Devil #4 Pre filter	03-28-16	. 5.40	V	GW			_	3	
 Report MTBE to 0.5 µg/L. Note any detection of MTBE ≥ 0.2 µg/L Analyze Travel and Field Blanks only if VOCs detected in samples. Use Calif State Write-On form to report results of Potable Water Wells Please Return all STPUD ice chests & Blue Ice. Belinquished by: Date: O3 * 31-16 Time Time											
Pricase metal all STF OD Ice cliests & Dide Ice. Sample Receipt Yes/No Comment Received intact Relinquished by: Signature OTTROC - DIDOIO917700004 Received br: Signature Company Received cold Print Oppon Oppon Oppon Custody seals Company Company The company The company	Report MTBE to 0.5 Analyze Travel and Use Calif State Writ	Field Blanks only if VOCs detected in samples. e-On form to report results of Potable Water Wells	Signature Print Company _	Jell South Taho			UUU VUU	Signature Print Company		Time	
Received cold Print Print Custody seals Company Company											<u>}</u>
Received cold Print Print Custody seals Company Company		Yes/No Comment	Relinquishe Signature	VIIRO	C-DI	000	1177692	CH Received Signature			$\langle $
Custody seals Company Company Company Company TCM								Print	NICOIR)
Data: Time Ulato: Time Ulato							·····		7-1-7L 1411	Т:	1000
Correct container	Correct container		Date:			Time	· · · ·	Date:		Time	_1000 Page _2 of _2

•

Condition Upon Receipt (Attach to COC)

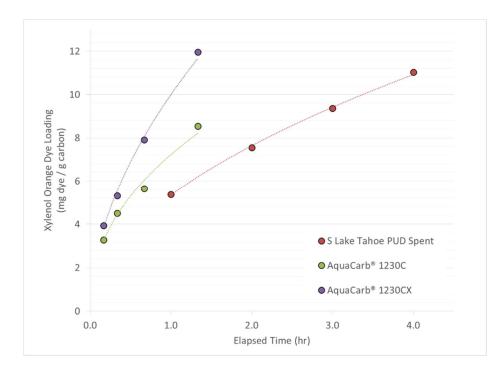
Sample Receipt at SP:							
1. Number of ice chests/packages received:	1						
2. Shipper tracking numbers							
3. Were samples received in a chilled condition? Temps:	4	/	_/	/	_/	/	/
4. Surface water (SWTR) bact samples: A sample that should be flagged unless the time since sample coll		•		•		whether ic	ed or not,
5. Do the number of bottles received agree with the COC?	Yes	No	N/A				
6. Verify sample date, time, sampler	Yes	No	N/A				
7. Were the samples received intact? (i.e. no broken [bottles, leaks, etc.)	Yes	No					
8. Were sample custody seals intact?	Yes	No	N/A				
Sample Verification, Labeling and Distribution:							
1. Were all requested analyses understood and acceptable?	Yes	No					
2. Did bottle labels correspond with the client's ID's?	Yes	No					
3. Were all bottles requiring sample preservation properly preserved? [Exception: Oil & Grease, VOA and CrVI verified in lab]	Yes	No	N/A	FGL			
4. VOAs checked for Headspace?	Yes	No	N/A				
5. Were all analyses within holding times at time of receipt?	Yes	No					
6. Have rush or project due dates been checked and accepted?	Yes	No	N/A				
Include a copy of the COC for lab delivery. (Bacti. Inor	oanics a	and Ra	dio)				
Sample Receipt, Login and Verification completed by:	-		, Reviewed a Approved I	NICOL	e Parson	FGI Title: Sa	y signed by Nicole Parson ample Receiving 4/01/2016-13:45:42
Discrepency Documentation:							
Any items above which are "No" or do not meet specif	ications	(i.e. te	mps) mu	st be resol	ved.		
1. Person Contacted:	Ph	none N	umber:				
Initiated By:	Da	ate:	_				
Problem:							
Resolution:							
2. Person Contacted:			umber:				
Initiated By:	Da	ate:	_				
Problem:							
Resolution:			So	uth Tah	(2011	•	lity District
			30				lity District
						03611	
				NMP	-04/01/2	016-13:4	5:42

Appendix G: Results of Dye Test

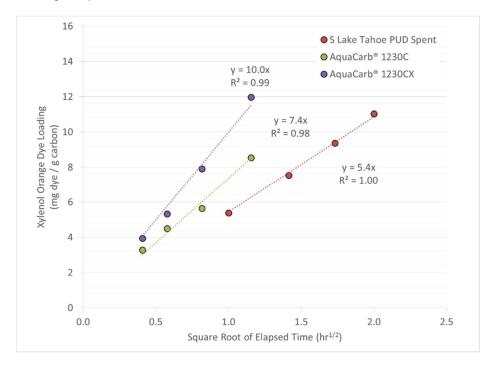
Ms. Stephanie Hearn GEI Consultants, Inc. shearn@geiconsultants.com

Name	Adam M. Redding, PhD
Department	Activated Carbon Products
Telephone	(724) 719-0805
E-mail	adam.redding@evoqua.com
Date	11 May 2016

Evoqua Water Technologies has completed the Dye Testing for the South Lake Tahoe PUD spent granular activated carbon (GAC) sample. This testing involved sieving full-scale 20×30 US-mesh size grains from the GAC sample and immersing that sample in a solution of xylenol orange dye. The sample was then stirred and the dye adsorption was measured over a period of approximately 6 hours. The test procedure is similar to that used in the 325×400 US-mesh size dye testing (see method attached). This full-scale grain procedure differs however in that a larger mass of carbon sample (0.5 g v. 0.05 g) is used since: 1) adsorption is slower on the larger grains and 2) a larger sample size decreases the influence of slight differences in the grain size and shape.


A particular advantage to this test, where the grains are not ground to a smaller size, is that the morphology of the grain and any internal fouling remain unchanged. As such, we can directly observe the influence of the fouling as it occurs in full-scale use. Conversely, grinding of the carbon sample may serve to negate the influence of fouling.

Notably, the adsorption observed in this testing with 20x30 grains (Figures 1 & 2) showed a slower adsorption rate than that measured for both virgin AquaCarb® 1230C, the virgin carbon used here, and for comparison, virgin AquaCarb® 1230CX, an enhanced coconut-based carbon known for a fast adsorption rate. The adsorption rate on the spent sample was ~30% slower than that measured for its virgin parent. Because sample preparation involved degassing/drying at 105°C and 15 inches of mercury, it is likely that few, if any, low-molecular weight organics remain in the structure. The difference in adsorption rate is more likely due to any remaining high-molecular weight organics (e.g. natural organic matter) or deposited inorganics, both accumulated during the service life of the GAC. The remaining organic content would however be removable during GAC reactivation, while inorganics such as calcium and magnesium will remain.


Evoqua has observed dye adsorption rate decreases greater than 50% between virgin and spent carbons. In that case, the impact on removal of low-molecular weight VOCs was quite consequential. In this case however, the rate drop is considerably less. Without tying this change to performance however, we cannot speculate as to the consequence of this level of fouling.

In this set of tests the carbon samples were allowed to wet for a period of ~24 hours, as opposed to the 20 minute period used with the 325×400 mesh grains. This longer wetting is necessary since the grains are considerably larger and must fully degas before beginning the test. As a additional observation and conclusion, this extended soaking period did not decrease the influence of fouling and therefore the foulant is not readily desorbable or soluble.

Thank you again for the opportunity to work with GEI and please feel free to contact me with any questions.

Fig. 1 - Adsorption of Xylenol Orange Dye on 20x30 grains of South Lake Tahoe PUD Spent as compared to virgin AquaCarb® 1230C and virgin AquaCarb® 1230CX. Note: x-axis is in units of hours.

Fig. 2 – Linearized data for the adsorption of Xylenol Orange Dye on 20x30 grains of South Lake Tahoe PUD Spent as compared to virgin AquaCarb® 1230C and virgin AquaCarb® 1230CX. Note: x-axis is in units of square root of elapsed time

181 Thorn Hill Road Warrendale, PA 15086

Xylenol Orange Dye Test Method

1. Scope

- 1.1 This test method covers the determination of the relative adsorption rate (i.e. mass transfer rate) of unused or reactivated carbons by adsorption of xylenol orange from aqueous solution. The rate of xylenol orange adsorption (in milligrams per gram per hour^{1/2}) by 0.05 g of carbon using test conditions listed herein is called the xylenol orange number.
- 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2. Referenced Documents

- 2.1 ASTM Standards:
 - D 1193 Specification for Reagent Water¹
 - D 2652 Terminology Relating to Activated Carbon²
 - D 2867 Test Method for Moisture in Activated Carbon²
 - D 3860 Practices for Determination of Adsorptive Capacity of Carbon by Isotherm Technique²
 - E 11 Specification for Wire-Cloth Sieves for Testing Purposes³
 - E 177 Practice for Laboratory Glass Graduated Burets³
 - E 288 Specification for Laboratory Glass Volumetric Flasks³
 - E 300 Practice for Sampling Industrial Chemicals⁴
- 2.2 NIST Publication:

Circular 602 – Testing of Glass Volumetric Apparatus⁵

3. Summary of Test Method

3.1 This method determines how activated carbon will perform when removing the dye xylenol orange by adding a known concentration of dye to a known concentration of activated carbon and then measuring the dye concentration remaining in solution as a function of time.

3.2 Once completed, the loading rate in $mg/g/hr^{\frac{1}{2}}$ is calculated, providing the rate of removal of the adsorbate Xylenol Orange. This method quantifies a carbon's performance under kinetic limitations.

3.3 The loading rate in mg/g/hr^{1/2} is reported as the xylenol orange number.

4. Significance and Use

- 4.1 The xylenol orange number is a relative indicator of the rate of adsorption in an activated carbon. It does not necessarily provide a measure of the carbon's ability to adsorb a particular contaminant. A carbon's ability may vary with changes in carbon raw material, processing conditions, and pore volume distribution (see Definitions D 2652).
- 4.2 The presence of adsorbed volatiles may affect the measured xylenol orange number of an activated carbon.

¹Annual Book of ASTM Standards, Vol 11.01.

²Annual Book of ASTM Standards, Vol 15.01.

³Annual Book of ASTM Standards, Vol 14.02.

⁴Annual Book of ASTM Standards, Vol 15.05.

⁵Available from National Institute of Standards and Technology, U.S. Department of Commerce, Gaithersburg, MD 20899.

5. Apparatus

Note 1—All volumetric measuring equipment should meet or exceed the requirements of NIST Circular 602. Volumetric glassware meeting these specifications is generally designated as "Class A". See also Specifications E 287 and E 288.

- 5.1 Analytical Balance, accuracy ±0.0001 g.
- 5.2 Oven, capable of temperature regulation between 145 and 155°C.
- 5.3 Pipettes, 100-1000 µL and 1-10mL.

5.4 *Disposable Syringes*, 5 mL syringe with Luer-LokTM tips (e.g. Becton, Dickinson, and Company).

5.5 Syringe Filters, 0.1 micron nylon syringe filters with polypropylene housing; 13 mm diameter.

5.6 Semi-micro Cuvettes, 1.5-3.0 mL disposable, 1 cm path, Brandtech Model 759165.

5.7 Spectrophotometer, with an accuracy of three decimal places at a wavelength of 487 nm.

5.8 *Stir Plate and Stir Bar*, where the stir bar is between 2-3 cm in length.

5.9 Grinding Mill, capable of grinding material to a size between a 325-mesh and 400-mesh sieve.

5.10 Sieves, 325-mesh and 400-mesh U.S. Standard sieves or equivalent conforming to Specification

E 11. The sieves shall be either 2 in. (51 mm) (full height) or 1 in. (25 mm.) (half height) in height, and 8 in. (203 mm or equivalent) in diameter.

5.11 *Mechanical Sieve Shaker*, this is a mechanically operated sieve shaker that imparts a uniform rotating and tapping motion or vibration to a stack of 8-in. (203-mm or equivalent) sieves as described in 5.10.

5.12 Bottom Receiver Pan and Top Sieve Cover.

5.13 *Volumetric flasks*, 4×10 mL, 200 mL, and 1 L.

6. Reagents

6.1 Xylenol Orange Disodium Salt, CAS # 1611-35-4, MW 716.62.

6.2 Sodium Phosphate Monobasic Anhydrous, ACS Reagent Grade, CAS # 7558-80-7, MW 119.98.

6.3 Sodium Phosphate Dibasic Anhydrous, ACS Reagent Grade, CAS # 7558-79-4, MW 141.96.

7. Activated Carbon Preparation

7.1 Proper GAC sampling (Practice E300) and preparation (grinding, classification, and washing) are required for reproducible results.

7.2 A sieve nest is constructed with a top cover, a 325-mesh sieve, a 400-mesh sieve, and a receiver pan.

7.3 The ground carbon sample is added to the upper sieve (325-mesh) and the sieve nest is then placed on the sieve shaker for several minutes.

7.4 Step 7.3 is repeated until a sufficient quantity (~ 0.1 g dry) of ground GAC can be recovered from the 400-mesh sieve.

7.5 Ground sample on the 325-mesh sieve is washed through to the 400-mesh sieve using reagent grade water. This step is continued until the water passing the 325-mesh sieve appears clear.

7.6 Sample collected on the 400-mesh sieve is washed reagent grade water until the water passing the sieve appears clear. Approximately 5-10 L of reagent water are required for Steps 7.5 and 7.6.

7.7 Sample remaining on the 400-mesh sieve is then washed into a ceramic drying dish. The sample should be allowed to settle for 1 minute and then decanted, removing any particles that float or do not readily settle. This step should be repeated until the supernatant appears clear (approximately 3 times).

7.8 The drying dish is covered with foil and dried according to ASTM D 2867 (150±5°C for 3h).

7.9 The dry carbon should be cooled to room temperature and stored in a dessicator until use.

7.10 The prepared sample, when shaken in a clear glass container, should produce little to no visible dust.

8. Preparation of Solutions

8.1 For a 10 mM, pH 7.2 phosphate buffer solution, measure out 0.379 gram of sodium phosphate monobasic anhydrous and 0.964 gram of sodium phosphate dibasic anhydrous and add these to 1 liter of reagent water. Mix the solution until no solids are visible to the naked eye. The buffer solution must be prepared monthly to ensure consistent results.

8.2 A xylenol orange dye standard is prepared at 2200 mg/L by adding 440 mg of dye to 200 mL of phosphate buffer. Stir solution for at least one hour then store in a brown glass bottle in a cool dark area. The dye standard must be prepared monthly to ensure consistent results.

9. Calibration Curve

9.1 A calibration curve is prepared from the xylenol orange dye standard. This curve will be used to calculate the concentration of the samples taken during the dye test after the sample has been passed through a 0.1 micron syringe filter to separate the dye from the carbon. A small amount of dye will be lost in the syringe filters during filtration and the calibration curve must account for this lost dye.

9.2 The 2200 mg/L xylenol orange standard is diluted with phosphate buffer to four selected concentrations of 50, 100, 150, and 200 mg/L using the volumes listed in Table 1.

9.3 2 mL of each concentration are pipetted into separate 5 mL syringes fitted with 0.1 micron syringe tip filters. The syringes are then emptied into separate cuvettes. The spectrophotometer is zeroed using a cuvette containing only the phosphate buffer solution and thereafter the absorbance of each sample is measured at a wavelength of 487 nm. The absorbance (cm^{-1}) is recorded to three decimal places. Measurement of the standards should be completed within 20 minutes of preparation to ensure that values do not change due to evaporation. Consult the manufacturer's recommendation for the pre-analysis warm-up time required for the specific spectrophotometer.

9.4 A plot of the standard concentration (mg/L) vs. absorbance (cm⁻¹) is created (See Figure 1 for an example). A linear fit to the filtered curve points must produce a coefficient of determination (R^2) of 0.98 or greater. If the R^2 does not meet these limits, the calibration must be repeated.

9.5 A new standard curve should be prepared for any change in reagents or materials, i.e. cuvette or syringe filter lot numbers.

Table 1 - Reference table for preparing the calibration curve. Pipette the listed volume of dye standard into the flask size listed and dilute to the volumetric mark with phosphate buffer to obtain the concentration listed.							
Concentration (mg/L)	Flask Size (mL)	Dye to add (mL)					
50	10	0.227					
100	10	0.455					
150	10	0.682					
200	10	0.909					

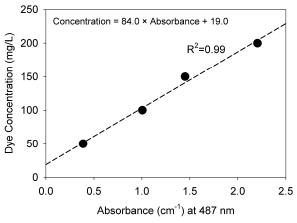


Figure 1 – Xylenol Orange calibration curve at 487 nm. The curve does not intersect the origin because some dye is adsorbed in the syringe filter.

10. Dye Test

10.1 To begin, 50 mL of phosphate buffer solution are added to a 100 mL beaker. The beaker is placed on a stir plate and a stir bar is added to the beaker.

10.2 A sample of 325×400 -mesh carbon is weighed to 0.0500 + 0.0005 grams and added to the 50 mL of phosphate buffer solution. The stir plate is started and set to a rate sufficient to suspend the carbon sample completely.

10.3 The slurry of carbon and phosphate buffer is covered with a watch glass to ensure minimal evaporation during the test.

10.4 The carbon and phosphate buffer solution are allowed to mix for at least 20 minutes. This ensures that the carbon pores are degassed and will be accessible to the dye during the test.

10.5 Once 20 minutes has elapsed, 5.00 mL of dye from the 2200 mg/L solution are added to the slurry using a 1-10 mL pipette. The test timer is started immediately once the dye has been fully added to the slurry.

10.6 At four sample times (10 min., 20 min., 40 min., 80 min.), 2 mL of slurry are collected from the carbon/dye solution and are pipetted into syringes equipped with 0.1 micron filters. The syringes are then emptied into cuvettes. A small amount of liquid will remain in the syringe filter, but there should be no liquid left in the syringe after emptying them into the cuvettes. After each sample is taken it should be analyzed within 5 minutes as detailed in step 7.7.

10.7 The spectrophotometer is zeroed (as it was for the calibration curve) and each sample is analyzed at a wavelength of 487 nm. The absorbance is recorded to 3 decimal places.

11. Calculations

11.1 Using the equation obtained for the filtered curve produced in steps 9.4 and 9.5, the concentration in mg/L from the absorbance obtained in step 10.7 is calculated as follows:

$$C = m \cdot A + b \tag{1}$$

where:

C =concentration of dye, mg/L

m = slope of calibration curve, cm·mg/L

 $A = absorbance of sample at 487 nm, cm^{-1}$

b = y-intercept of calibration curve, mg/L

11.2 From the concentrations determined in 11.1, the dye loading (mg dye / g carbon) is calculated as follows:

$$Q_{T2} = (C_{T1} - C_{T2}) \cdot \frac{V_{T1}}{M_{T1}} \cdot \frac{L}{1000mL}$$
(2)

where:

 Q_{T2} = dye loading at end of sampling period, mg/g C_{TI} = concentration of dye at start of sampling period, mg/L C_{T2} = concentration of dye at end of sampling period, mg/L V_{TI} = volume of solution at start of sampling period, mL M_{TI} = mass of carbon at start of sampling period, g

For each sample point, 2 mL is removed from the solution volume, and with that volume, ~ 0.002 g of carbon is assumed to be removed; these reductions must be accounted for with each subsequent loading calculation. *Table 2* shows these values.

Table 2 – Solution volume and carbon mass per sampling point								
Sample Time (min)	Remaining Carbon (M_{TI}, g)	Remaining Solution (V _{T1} , mL)						
10	0.0500	55.00						
20	0.0481	53.00						
40	0.0462	51.00						
80	0.0442	49.00						

11.3 The loading rate vs. the square root of the sample time is plotted for each carbon. Time should be converted from minutes to hours for this plot. See *Figure 2* for an example. A linear fit through the origin must produce an R^2 of 0.95 or greater, or the test should be repeated.

11.4 From the linear regression of the loading data through the origin the xylenol orange number can be determined as follows:

$$Q_t = M_{XON} \cdot t^{\frac{1}{2}} \tag{3}$$

where:

 Q_t = dye loading at time (t), mg/g t = elapsed time, hr M_{XON} = xylenol orange number, mg/g/hr^{1/2}

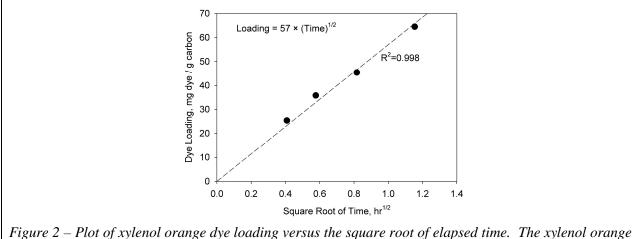


Figure 2 – Plot of xylenol orange dye loading versus the square root of elapsed time. The xylenol orange number is determined from the slope of a linear regression through the origin. Here the xylenol orange number is 57 mg/g/hr^{1/2}.

LIQUID PHASE ISOTHERM DESIGN PARAMETERS

Water Flow Rate

400.00000 gpm

LIQUID PHASE DESIGN		
Component Name	Concentration	#GAC/1000 gallons of water
ETHENE,TETRACHLORO- (PCE) TOLUENE	39.0000 ppbw 16.0000 ppbw	0.0215 0.0142
<i>Total Carbon Usage Estimated at Breakthrough</i> 20.5871 #GAC/day 0.0357 #GAC/1000 gallons of water		

The above carbon usage estimates are based on both experimental data as well as predictive models. Actual carbon usage rates observed at various stages of breakthrough depend on many factors, and may therefore differ from the above estimates. Please contact Westates Carbon Products for further assisitance.

LIQUID PHASE ISOTHERM DESIGN PARAMETERS

Water Flow Rate

400.00000 gpm

LIQUID PHASE DESIGN								
#GAC/1000 Component Name Concentration Q [Wt %] gallons of water Suitabilit								
ETHENE,TETRACHLORO- (PCE) TOLUENE	39.0000 ppbw 16.0000 ppbw	2.6466 1.6390	0.0123 0.0081	In Range In Range				

Total Carbon Usage Estimated at Breakthrough 20.5871 #GAC/day

0.0357 #GAC/1000 gallons of water

(Both totals have been multiplied by a factor of 1.75)

The above carbon usage estimates are based on both experimental data as well as predictive models. Actual carbon usage rates observed at various stages of breakthrough depend on many factors, and may therefore differ from the above estimates. Please contact Westates Carbon Products for further assisitance.

Appendix H: Evoqua Water Technologies Quote

June 1, 2016

GEI Consultants, Inc 843 Hazel Drive South Lake Tahoe, CA 96150 Attn: Stephanie Hearn

Re: Budgetary Information

Dear Stephanie,

Evoqua Water Technologies (Evoqua) is pleased to submit this budgetary proposal. Please be advised that this budgetary proposal is a non-binding commitment, is being utilized for review and informational purposes, and does not constitute an offer for acceptance.

MAJOR COMPONENTS

Major mechanical components include:

- One (1) HP810SYS: (2) 8-Foot Diameter Carbon Adsorbers and Interconnecting Manifold Assembly.
- Initial fill of 20,000 lbs of AC1230C, 12 x 30 mesh virgin coconut granular activated carbon.
 Each adsorber has a capacity of 10,000lbs.
- Freight to the S. Lake Tahoe (FOB Red Bluff, CA)
- Installation supervision of all equipment outlined in this proposal, start-up and training. This
 is limited to 1 trip, 2 days on site. Additional service time can be provided at a per diem
 rate.
- Offloading and Installation of equipment on customer supplied level pad. Evoqua Water Technologies includes crane, labor, and anchoring. Clear access to site is required by client.

SYSTEM PRICING

HP810SYS System

 Supply and Delivery of one (1) HP810SYS as described in proposal to jobsite, initial
 \$240,000

 fill of 20,000 lbs. of AC1230C carbon. Offloading and installation on customer
 provided pad.

This quote is for budgetary purposes only. It was formulated by reviewing the data provided and based on our experience with similar systems. The ultimate price may be improved through value engineering, however, the final scope of work will dictate the actual dollar value for the equipment package

COMMERCIAL TERMS

Prices Do Not Include The Following:

- Sales tax
- Site preparation including developing a concrete pad, grouting, weather protection, etc.
- Site piping / fabrication other than final connections.
- Well, vessel or piping disinfection.

Also Please Note:

- Budgetary information pricing valid for 30 days from date of proposal.
- Evoqua Water Technologies LLC's price does not include, and Evoqua Water Technologies LLC shall not be responsible for, any taxes, permits, tariffs, duties or fees (or any incremental increases to such taxes, permits, tariffs, duties or fees enacted by governmental agencies) unless specifically agreed herein or otherwise by Evoqua Water Technologies LLC in writing.

Thank you for this opportunity to provide this budgetary quotation. Please contact me at (916) 316-1935 if you have questions or if we may be of further assistance. We look forward to working with you on this project.

Sincerely,

Tom Morrical Evoqua Water Technologies LLC Industry Sector

Attachments: Standard Terms and Conditions Product Bulletins

EVOQUA WATER TECHNOLOGIES LLC

Standard Terms of Sale

1. <u>Applicable Terms.</u> These terms govern the purchase and sale of equipment, products, related services, leased products, and media goods if any (collectively herein "Work"), referred to in Seller's proposal ("Seller's Documentation"). Whether these terms are included in an offer or an acceptance by Seller, such offer or acceptance is expressly conditioned on Buyer's assent to these terms. Seller rejects all additional or different terms in any of Buyer's forms or documents.

2. **Payment.** Buyer shall pay Seller the full purchase price as set forth in Seller's Documentation. Unless Seller's Documentation specifically provides otherwise, freight, storage, insurance and all taxes, levies, duties, tariffs, permits or license fees or other governmental charges relating to the Work or any incremental increases thereto shall be paid by Buyer. If Seller is required to pay any such charges, Buyer shall immediately reimburse Seller. If Buyer claims a tax or other exemption or direct payment permit, it shall provide Seller with a valid exemption certificate or permit and indemnify, defend and hold Seller harmless from any taxes, costs and penalties arising out of same. All payments are due within 30 days after receipt of invoice. Buyer shall be charged the lower of 1 ½% interest per month or the maximum legal rate on all amounts not received by the due date and shall pay all of Seller's reasonable costs (including attorneys' fees) of collecting amounts due but unpaid. All orders are subject to credit approval by Seller. Back charges without Seller's prior written approval shall not be accepted.

3. <u>Delivery.</u> Delivery of the Work shall be in material compliance with the schedule in Seller's Documentation. Unless Seller's Documentation provides otherwise, delivery terms are ExWorks Seller's factory (Incoterms 2010). Title to all Work shall pass upon receipt of payment for the Work under the respective invoice. Unless otherwise agreed to in writing by Seller, shipping dates are approximate only and Seller shall not be liable for any loss or expense (consequential or otherwise) incurred by Buyer or Buyer's customer if Seller fails to meet the specified delivery schedule.

4. <u>**Ownership of Materials and Licenses.**</u> All devices, designs (including drawings, plans and specifications), estimates, prices, notes, electronic data, software and other documents or information prepared or disclosed by Seller, and all related intellectual property rights, shall remain Seller's property. Seller grants Buyer a non-exclusive, non-transferable license to use any such material solely for Buyer's use of the Work. Buyer shall not disclose any such material to third parties without Seller's prior written consent. Buyer grants Seller a non-exclusive, non-transferable license to use Buyer's name and logo for marketing purposes, including but not limited to, press releases, marketing and promotional materials, and web site content.

5. <u>Changes.</u> Neither party shall implement any changes in the scope of Work described in Seller's Documentation without a mutually agreed upon change order. Any change to the scope of the Work, delivery schedule for the Work, any Force Majeure Event, any law, rule, regulation, order, code, standard or requirement which requires any change hereunder shall entitle Seller to an equitable adjustment in the price and time of performance.

6. **Force Majeure Event.** Neither Buyer nor Seller shall have any liability for any breach or delay (except for breach of payment obligations) caused by a Force Majeure Event. If a Force Majeure Event exceeds six (6) months in duration, the Seller shall have the right to terminate the Agreement without liability, upon fifteen (15) days written notice to Buyer, and shall be entitled to payment for work performed prior to the date of termination. "Force Majeure Event" shall mean events or circumstances that are beyond the affected party's control and could not reasonably have been easily avoided or overcome by the affected party and are not substantially attributable to the other party. Force Majeure Event may include, but is not limited to, the following circumstances or events: war, act of foreign enemies, terrorism, riot, strike, or lockout by persons other than by Seller or its sub-suppliers, natural catastrophes or (with respect to on-site work), unusual weather conditions.

7. Warranty. Subject to the following sentence, Seller warrants to Buyer that the (i) Work shall materially conform to the description in Seller's Documentation and shall be free from defects in material and workmanship and (ii) the Services shall be performed in a timely and workmanlike manner. Determination of suitability of treated water for any use by Buyer shall be the sole and exclusive responsibility of Buyer. The foregoing warranty shall not apply to any Work that is specified or otherwise demanded by Buyer and is not manufactured or selected by Seller, as to which (i) Seller hereby assigns to Buyer, to the extent assignable, any warranties made to Seller and (ii) Seller shall have no other liability to Buyer under warranty, tort or any other legal theory. The Seller warrants the Work, or any components thereof, through the earlier of (i) eighteen (18) months from delivery of the Work or (ii) twelve (12) months from initial operation of the Work or ninety (90) days from the performance of services (the "Warranty Period"). If Buyer gives Seller prompt written notice of breach of this warranty within the Warranty Period, Seller shall, at its sole option and as Buyer's sole and exclusive remedy, repair or replace the subject parts, re-perform the Service or refund the purchase price. Unless otherwise agreed to in writing by Seller, (i) Buyer shall be responsible for any labor required to gain access to the Work so that Seller can assess the available remedies and (ii) Buyer shall be responsible for all costs of installation of repaired or replaced Work. If Seller determines that any claimed breach is not, in fact, covered by this warranty, Buyer shall pay Seller its then customary charges for any repair or replacement made by Seller. Seller's warranty is conditioned on Buyer's (a) operating and maintaining the Work in accordance with Seller's instructions, (b) not making any unauthorized repairs or alterations, and (c) not being in default of any payment obligation to Seller. Seller's warranty does not cover (i) damage caused by chemical action or abrasive material, misuse or improper installation (unless installed by Seller) and (ii) media goods (such as, but not limited to, resin, membranes, or granular activated carbon media) once media goods are installed. THE WARRANTIES SET FORTH IN THIS SECTION 7 ARE THE SELLER'S SOLE AND EXCLUSIVE WARRANTIES AND ARE SUBJECT TO THE LIMITATION OF LIABILITY PROVISION BELOW. SELLER MAKES NO OTHER WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR PURPOSE.

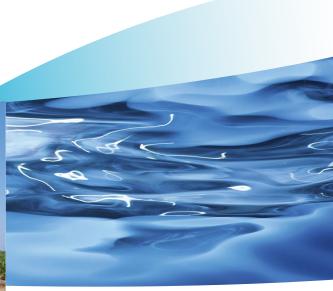
8. <u>Indemnity.</u> Seller shall indemnify, defend and hold Buyer harmless from any claim, cause of action or liability incurred by Buyer as a result of third party claims for personal injury, death or damage to tangible property, to the extent caused by Seller's negligence. Seller shall have the sole authority to direct the defense of and settle any indemnified claim. Seller's indemnification is conditioned on Buyer (a) promptly, within the Warranty Period, notifying Seller of any claim, and (b) providing reasonable cooperation in the defense of any claim.

9. <u>Assignment.</u> Neither party may assign this Agreement, in whole or in part, nor any rights or obligations hereunder without the prior written consent of the other party; provided, however, the Seller may assign its rights and obligations under these terms to its affiliates or in connection with the sale or transfer of the Seller's business and Seller may grant a security interest in the Agreement and/or assign proceeds of the agreement without Buyer's consent.

10. <u>**Termination.**</u> Either party may terminate this agreement, upon issuance of a written notice of breach and a thirty (30) day cure period, for a material breach (including but not limited to, filing of bankruptcy, or failure to fulfill the material obligations of this agreement). If Buyer suspends an order without a change order for ninety (90) or more days, Seller may thereafter terminate this Agreement without liability, upon fifteen (15) days written notice to Buyer, and shall be entitled to payment for work performed, whether delivered or undelivered, prior to the date of termination.

11. **Dispute Resolution.** Seller and Buyer shall negotiate in good faith to resolve any dispute relating hereto. If, despite good faith efforts, the parties are unable to resolve a dispute or claim arising out of or relating to this Agreement or its breach, termination, enforcement, interpretation or validity, the parties will first seek to agree on a forum for mediation to be held in a mutually agreeable site. If the parties are unable to resolve the dispute through mediation, then any dispute, claim or controversy arising out of or relating to this Agreement or the breach, termination, enforcement, interpretation or validity thereof, including the determination of the scope or applicability of this agreement to arbitrate, shall be determined by arbitration in Pittsburgh, Pennsylvania before three arbitrators who are lawyers experienced in the discipline that is the subject of the dispute and shall be jointly selected by Seller and Buyer. The arbitration shall be administered by JAMS pursuant to its Comprehensive Arbitration Rules and Procedures. The Arbitrators shall issue a reasoned decision of a majority of the arbitrators, which shall be the decision of the panel. Judgment may be entered upon the arbitrators' decision in any court of competent jurisdiction. The substantially prevailing party as determined by the arbitrators shall be reimbursed by the other party for all costs, expenses and charges, including without limitation reasonable attorneys' fees, incurred by the prevailing party in connection with the arbitration. For any order shipped outside of the United States, any dispute shall be referred to and finally determined by the International Center for Dispute Resolution in accordance with the provisions of its International Arbitration Rules, enforceable under the New York Convention (Convention on the Recognition and Enforcement of Foreign Arbitral Awards) and the governing language shall be English.

12. **Export Compliance.** Buyer acknowledges that Seller is required to comply with applicable export laws and regulations relating to the sale, exportation, transfer, assignment, disposal and usage of the Work provided under this Agreement, including any export license requirements. Buyer agrees that such Work shall not at any time directly or indirectly be used, exported, sold, transferred, assigned or otherwise disposed of in a manner which will result in non-compliance with such applicable export laws and regulations. It shall be a condition of the continuing performance by Seller of its obligations hereunder that compliance with such export laws and regulations be maintained at all times. BUYER AGREES TO INDEMNIFY AND HOLD SELLER HARMLESS FROM ANY AND ALL COSTS, LIABILITIES, PENALTIES, SANCTIONS AND FINES RELATED TO NON-COMPLIANCE WITH APPLICABLE EXPORT LAWS AND REGULATIONS.


13. **LIMITATION OF LIABILITY.** NOTWITHSTANDING ANYTHING ELSE TO THE CONTRARY, SELLER SHALL NOT BE LIABLE FOR ANY CONSEQUENTIAL, INCIDENTAL, SPECIAL, PUNITIVE OR OTHER INDIRECT DAMAGES, AND SELLER'S TOTAL LIABILITY ARISING AT ANY TIME FROM THE SALE OR USE OF THE WORK, INCLUDING WITHOUT LIMITATION ANY LIABILITY FOR ALL WARRANTY CLAIMS OR FOR ANY BREACH OR FAILURE TO PERFORM ANY OBLIGATION UNDER THE CONTRACT, SHALL NOT EXCEED THE PURCHASE PRICE PAID FOR THE WORK. THESE LIMITATIONS APPLY WHETHER THE LIABILITY IS BASED ON CONTRACT, TORT, STRICT LIABILITY OR ANY OTHER THEORY.

14. <u>Rental Equipment / Services</u>. Any leased or rented equipment ("Leased Equipment") provided by Seller shall at all times be the property of Seller with the exception of certain miscellaneous installation materials purchased by the Buyer, and no right or property interest is transferred to the Buyer, except the right to use any such Leased Equipment as provided herein. Buyer agrees that it shall not pledge, lend, or create a security interest in, part with possession of, or relocate the Leased Equipment. Buyer shall be responsible to maintain the Leased Equipment in good and efficient working order. At the end of the initial term specified in the order, the terms shall automatically renew for the identical period unless canceled in writing by Buyer or Seller not sooner than three (3) months nor later than one (1) month from termination of the initial order or any renewal terms. Upon any renewal, Seller shall have the right to issue notice of increased pricing which shall be effective for any renewed terms unless Buyer objects in writing within fifteen (15) days of issuance of said notice. If Buyer timely cancels service in writing prior to the end of the initial or any renewal term this shall not relieve Buyer of its obligations under the order for the monthly rental service charge which shall continue to be due and owing. Upon the expiration or termination of this Agreement, Buyer shall promptly make any Leased Equipment available to Seller for removal. Buyer hereby agrees that it shall grant Seller access to the Leased Equipment location and shall permit Seller to take possession of and remove the Leased Equipment without resort to legal process and hereby releases Seller from any claim or right of action for trespass or damages caused by reason of such entry and removal.

15. <u>Miscellaneous</u>, These terms, together with any Contract Documents issued or signed by the Seller, comprise the complete and exclusive statement of the agreement between the parties (the "Agreement") and supersede any terms contained in Buyer's documents, unless separately signed by Seller. No part of the Agreement may be changed or cancelled except by a written document signed by Seller and Buyer. No course of dealing or performance, usage of trade or failure to enforce any term shall be used to modify the Agreement. To the extent the Agreement is considered a subcontract under Buyer's prime contract with an agency of the United States government, in case of Federal Acquisition Regulations (FARs) flow down terms, Seller will be in compliance with Section 44.403 of the FAR relating to commercial items and those additional clauses as specifically listed in 52.244-6, Subcontracts for Commercial Items (OCT 2014). If any of these terms is unenforceable, such term shall be limited only to the extent necessary to make it enforceable, and all other terms shall remain in full force and effect. The Agreement shall be governed by the laws of the Commonwealth of Pennsylvania without regard to its conflict of laws provisions. Both Buyer and Seller reject the applicability of the United Nations Convention on Contracts for the international sales of goods to the relationship between the parties and to all transactions arising from said relationship.

HP® SERIES LIQUID PHASE ADSORPTION SYSTEMS (ASME CODE)

Applications

The HP[®] Series Adsorption Systems are designed to remove dissolved organic contaminants from water. These systems are cost effectively used in applications including:

- Groundwater remediation
- Wastewater filtration
- Tank rinse water treatment
- Pilot testing
- Underground storage tank clean up
- Leachate treatment
- Dechlorination
- Spill cleanup
- Food grade
- Drinking water

Installation, Startup and Operation

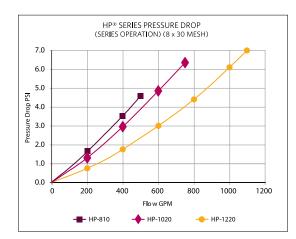
The HP 810, HP 1020 and HP 1220 systems are shipped as separate components—two adsorbers and a piping skid module. The piping module allows the adsorbers to operate in series or parallel configurations. The systems requires minimal field assembly and site connections.

Evoqua can provide a total service package that includes utilizing OSHA trained personnel providing on-site carbon changeouts, packaging and transportation of spent carbon for recycling at our RCRA permitted reactivation facilities, where the contaminants are thermally destroyed.

We can provide instructions on sampling the spent carbon and completion of our spent carbon profile form. Spent carbon acceptance testing can be performed at our certified laboratory. When requested, a certificate of reactivation will be issued.

FEATURES AND BENEFITS

- ASME code section VIII (stamped), carbon steel vessel
- SSPC-SP5 surface preparation, NSF approved Plasite vinyl ester lining; rust preventative epoxy/urethane exterior
- Uniform, continuous internal lining flange to flange (HP 1020/1220 Systems)
- Proprietary vertical 316 stainless steel externally removable septa nozzles (HP 1020/1220 Systems) allows maintenance of underdrain without vessel entry
- Modular design for easy handling and installation
- Internal spray nozzle ensures complete removal of all spent carbon
- Schedule 40 carbon steel pipe, supplied with cast iron gear/wheel operated butterfly valves with EPDM seats
- Carbon slurry piping made from schedule 40 carbon steel
- In-bed water sample collection ports —25
 50 75% bed depths
- Top and side manway allows for easy internal inspection


SPECIFICATIONS/TYPICAL PROPERTIES

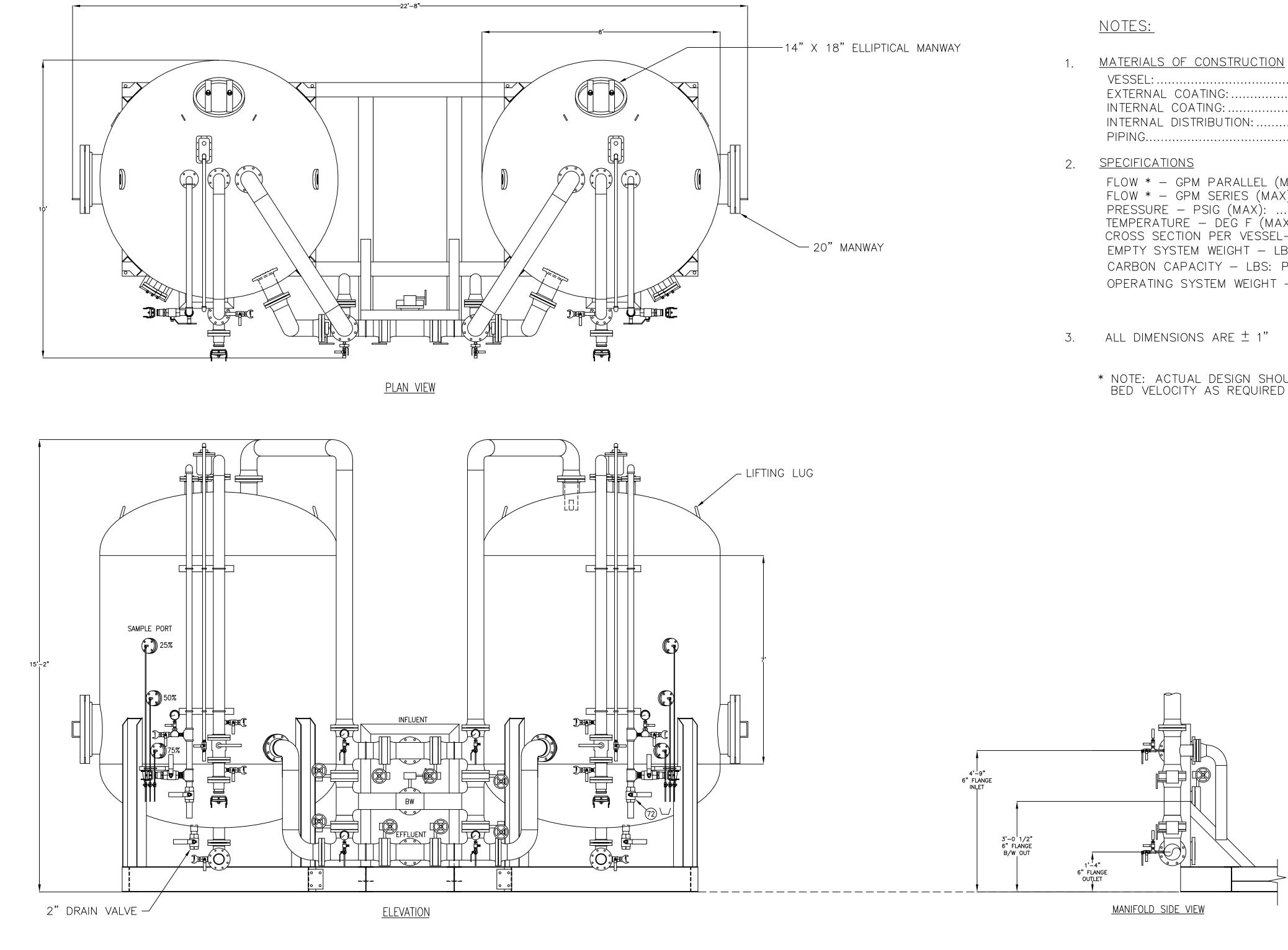
	HP [®] 810SYS	HP® 1020SYS	HP® 1220SYS
Dimensions (each adsorber - dia. x sidewall height)	96" x 84"	120″ x 96″	144" x 60"
Overall Height	15' 2"	18′ 2″	16' 4"
System Length	22' 8"	26' 10"	28' 10"
System Width	10'	11' 3"	13' 2"
Process Piping	6"	8"	8"
Flanged Inlet/Outlet (150# ANSI)	6"	8"	8"
Carbon Fill/Discharge	4"	4"	4"
Flanged Backwash/Vent	6"	8"	8"
Manway (dia., side shell location)	20"	20"	20"
Manway (top)	14" x 18"	14" x 18"	14" x 18"
Utility Water/Air (hose connection) $^{\oplus}$	2"	2"	2"
Interior Coating	Vinyl Ester	Vinyl Ester	Vinyl Ester
Exterior Coating	Urethane	Urethane	Urethane
Empty System Weight (lbs.)	15,500	34,000	35,000
Carbon Weight/Vessel (lbs.) [©]	10,000	20,000	20,000
Operating Weight (lbs.)	85,000	138,000	155,000
Design Pressure (PSIG) @ 140°F	125	125	125
Max. Flow (GPM) Series/Parallel	500/1,000	750/1,500	1,100/2,200
Backwash Rate (GPM) (8 x 30 mesh @ 55°F)	450	710	1,000
-			

① Kamlock type

For detailed specifications or dimensional information or drawings, contact your local Evoqua sales representative.

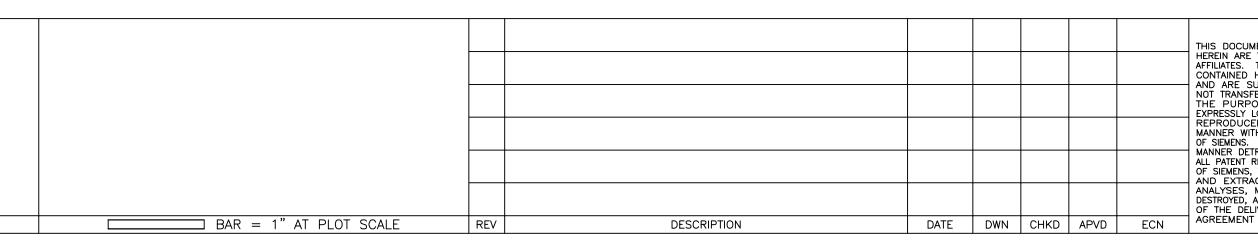
② Weight of carbon based on density of 29.5 lb./ft3. Loaded weight can vary depending on actual density of GAC.

Safety Note: Wet activated carbon readily adsorbs atmospheric oxygen. Dangerously low oxygen levels may exist in closed vessels or poorly ventilated storage areas. Workers should follow all applicable state and federal safety guidelines for entering oxygen depleted areas.


4800 North Point Parkway, Suite 250, Alpharetta, GA 30022

+1 (866) 926-8420 (toll-free) +1 (978) 614-7233 (toll) WWW.evoqua.com

HP is a trademark of Evoqua, its subsidiaries or affiliates, in some countries.

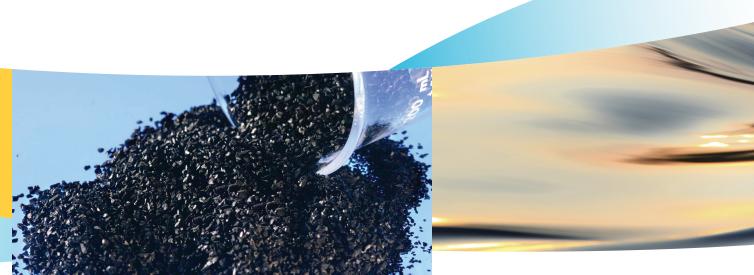

All information presented herein is believed reliable and in accordance with accepted engineering practices. Evoqua makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Evoqua assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.

© 2014 Evoqua Water Technologies LLC Subject to change without notice WS-HP-DS-0614

STD: BORDER-0106-24X36D1

INTL REF:

4


	CARBON STEEL
NG:	HIGH SOLIDS URETHANE, BLUE
NG:	PLASITE 4110
BUTION:	SST
	CARBON STEEL

PARALLEL (MAX):	1000
SERIES (MAX):	500
IG (MAX):	
DEG F (MAX):	
PER VESSEL- SQ. FT:	49.2
WEIGHT — LBS: (APPROX,)	.15,500
TY – LBS: PER VESSEL (APPROX,)	10,000
EM WEIGHT – LBS: (APPROX,)	85,000

* NOTE: ACTUAL DESIGN SHOULD BE BASED ON SUPERFICIAL BED VELOCITY AS REQUIRED FOR SPECIFIC CONTAMINANTS.

COMPANY CONFIDENTIAL	DESIGNER	DATE	TITLE	HP810 S	YS						
THE PROPERTY OF EVOQUA AND/OR ITS	CAR	2-6-14			ASSEMBLY						
THE DESIGN CONCEPTS AND INFORMATION HEREIN ARE PROPRIETARY TO SIEMENS UBMITTED IN CONFIDENCE. THEY ARE	CHECKER	DATE									
ERABLE AND MUST BE USED ONLY FOR			CLIENT								
DSE FOR WHICH THE DOCUMENT IS OANED. THEY MUST NOT BE DISCLOSED, D, LOANED OR USED IN ANY OTHER HOUT THE EXPRESS WRITTEN CONSENT	ENGINEER	DATE									
IN NO EVENT SHALL THEY BE USED IN ANY RIMENTAL TO THE INTEREST OF SIEMENS. RIGHTS ARE RESERVED. UPON THE DEMAND THIS DOCUMENT, ALONG WITH ALL COPIES	MANAGER	DATE		evo	QUA	RE	TER TECHNOLOGIES				
CTS, AND ALL RELATED NOTES AND MUST BE RETURNED TO SIEMENS OR	FILE:			WATER TEC	HNOLOGIES	53	0-527-2664				
AS INSTRUCTED BY SIEMENS. ACCEPTANCE			F	PROJECT	CODE		DRAWING		SHEET		REV
TO THESE TERMS AND CONDITIONS.	SCALE:						HP810 SYS	1	OF	1	0

WESTATES® COCONUT SHELL BASED GRANULAR ACTIVATED CARBON - AQUACARB® 830C, 1230C AND 1240C CARBONS

FOR USE IN POTABLE WATER AND PROCESS WATER APPLICATIONS

AquaCarb[®] 830C, 1230C and 1240C carbons are high activity coconut shell based granular activated carbons. These hard, attrition resistant high surface area carbons are designed to remove difficult to adsorb organics from potable, waste and process water. They are especially effective for adsorbing chlorine, disinfection by-products, TCE, PCE, MTBE and other trace level organics.

Applications

Cost effective AquaCarb activated carbons developed by Evoqua have been demonstrated to provide superior performance in an extensive array of liquid phase treatment applications. AquaCarb activated carbons are available for:

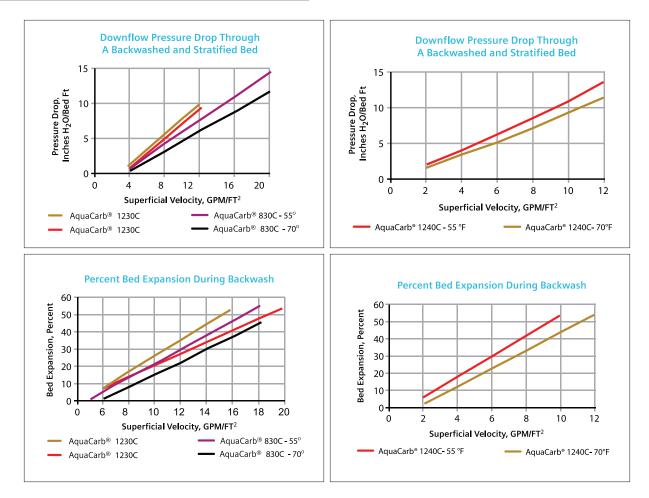
- Removal of trace organic contaminants
- Pesticide removal
- MTBE removal
- Disinfection by-product (DBP) removal
- Drinking water treatment
- Industrial process water treatment
- Home water filtration systems

Quality Control

AquaCarb activated carbons are extensively quality checked at our State of California certified environmental and carbon testing laboratory located in Los Angeles, CA. Evoqua's laboratory is fully equipped to provide complete quality control analyses using ASTM standard test methods in order to assure the consistent quality of all Westates[®] carbons.

Our technical staff offers hands-on guidance in selecting the most appropriate system, operating conditions and carbon to meet your needs. For more information, contact your nearest Evoqua representative.

Features and Benefits


- ANSI/NSF Standard 61 classified for use in potable
 water applications
- Fully conforms to physical, performance and leachability requirements established by the current ANSI/AWWA B604 (which includes the Food Chemical Codex requirements)
- A detailed quality assurance program guarantees consistent quality from lot to lot and shipment to shipment

TYPICAL PROPERTIES

Parameter	AquaCarb® 830C	AquaCarb 1230C	AquaCarb 1240C
Carbon Type	Coconut Shell	Coconut Shell	Coconut Shell
Mesh Size, U.S. Sieve	8 x 30	12 x 30	12 x 40
Effective Size, mm	0.8 - 1.1	0.6 - 0.85	0.55 - 0.75
Uniformity Coefficient	2.1	2.0	1.9
lodine No., mg I ₂ /g	1100	1100	1100
Hardness No., Wt. %	95	95	95
Abrasion No., Wt. %	85	85	85
Apparent Density, g/cc	0.46 - 0.52	0.46 - 0.52	0.46 - 0.52
Water Soluble Ash, Wt. %	2	2	2

Safety Note: Under certain conditions, some compounds may oxidize, decompose or polymerize in the presence of activated carbon causing a carbon bed temperature rise that is sufficient to cause ignition. Particular care must be exercised when compounds that have a peroxide-forming tendency are being adsorbed. In addition the adsorption of VOCs will lead to the generation of heat within a carbon bed. These heats of reaction and adsorption need to be properly dissipated in order to fully assure the safe operation of the bed.

Wet activated carbon readily adsorbs atmospheric oxygen. Dangerously low oxygen levels may exist in closed vessels or poorly ventilated storage areas. Workers should follow all applicable state and federal safety guidelines for entering oxygen depleted areas.

181 Thorn Hill Road, Warrendale, PA 15086

+1 (866) 926-8420 (toll-free)

+1 (978) 614-7233 (toll) www.evoqua.com

AquaCarb and Westates are trademarks of Evoqua, its subsidiaries or affiliates, in some countries.

All information presented herein is believed reliable and in accordance with accepted engineering practices. Evoqua makes no warranties as to the completeness of this information. Users are responsible for evaluating individual product suitability for specific applications. Evoqua assumes no liability whatsoever for any special, indirect or consequential damages arising from the sale, resale or misuse of its products.

Appendix I: Policy Memo 97-005, Extremely Impaired Sources

Memorandum

Date:	November 5, 1997
To:	Drinking Water Program Regional and District Engineers
From:	Division of Drinking Water and Environmental Management
Subject:	Policy Memo 97-005 Policy Guidance for Direct Domestic Use of Extremely Impaired Sources

A. General Philosophy

The primary goal of the Drinking Water Program (DWP) is to assure that all Californians are, to the extent possible, provided a reliable supply of safe drinking water. In furtherance of this goal, the DWP continues to subscribe to the basic principle that only the best quality sources of water reasonably available to a water utility should be used for drinking. When feasible choices are available, the sources presenting the least risk to public health should be utilized. Furthermore, these sources should be protected against contamination. Whenever possible, lower quality source waters should be used for nonconsumptive uses, such as irrigation, recreation, or industrial uses, which pose lower health risk.

The use of contaminated water as a drinking water source always poses a greater health risk and hazard to the public than the use of an uncontaminated source because of the chance that the necessary treatment may fail.

The use of an extremely impaired source should not be approved unless the additional health risk, relative to the use of other available drinking water sources, are known, minimized, and considered acceptable.

Water utilities (including wholesalers) should be encouraged to minimize the concentration of man-made toxic substances, naturally occurring contaminants, and pathogenic microorganisms in drinking water supplies, maximum contaminant levels (MCLs) notwithstanding.

Extremely impaired sources that contain or are likely to contain high concentrations of contaminants, multiple contaminants, or unknown contaminants (such as groundwater subject to contamination from a hazardous waste disposal site) should not be considered for direct human consumption where alternatives are available.

Where reasonable alternatives are available, high quality drinking water should not be allowed to be degraded by the planned addition of contaminants. In other words, the MCLs should not be used to condone contamination up to those levels where the addition of those contaminants can be reasonable avoided.

Regional and District Engineers Page 2 November 5, 1997

Drinking water quality and public health shall be given greater consideration than costs or cost savings when evaluating alternative drinking water sources or treatment processes.

The DWP recognizes that there are extremely impaired sources in California that need to be cleaned up and for which the resulting product water represents a significant resource that should not be wasted. In some situations, it may be reasonable to consider the use of these treated extremely impaired sources for domestic use. Some communities may not have any choice. In such cases, the public health principles as set forth in this policy should be used to guide the evaluation of such situations.

B. Purpose of Policy Guidance

The purpose of this guidance document is to set forth the position and the basic tenets by which DWP would evaluate proposals, establish appropriate permit conditions, and approve the use of an extremely impaired source for any direct potable use.

An extremely impaired source meets one or more of the following criteria:

- exceeds 10 times an MCL or action level (AL) based on chronic health effects,
- exceeds 3 times an MCL or AL based on acute health effects,
- is a surface water that requires more than 4 log *Giardia*/5 log virus reduction,
- is extremely threatened with contamination due to proximity to known contaminating activities
- contains a mixture of contaminants of health concern
- is designed to intercept known contaminants of health concern.

Examples include:

- Extremely contaminated ground water
- Effluent dominated surface water
- Oilfield produced water
- Water that is predominantly recycled water; urban storm drainage; treated or untreated wastewater; or agricultural return water
- Products of toxic site cleanup programs

It is recognized that the circumstances surrounding each situation may be different. Proposals for the use of extremely impaired sources, therefore, must be considered on a case-by-case basis.

C. Elements of an Evaluation Process for an Extremely Impaired Drinking Water Source

1. Source Water Assessment:

Regional and District Engineers Page 3 November 5, 1997

The purpose of the source water assessment for the extremely impaired source is to determine the extent to which the aquifer or surface water is vulnerable to contaminating activities in the area. There may be other contaminants associated with activities that contribute to the known contamination, or other contamination sources that have yet to impact the drinking water source. There may not be drinking water MCLs, Als or monitoring requirements established for these additional contaminants, but health related information may be available through other programs. The appropriate level of monitoring and treatment to produce a safe drinking water cannot be determined unless the activities that are affecting or may impact raw water quality are understood. The assessment should include:

- Delineation of the source water capture zone
- Identification of contaminant sources
 - Identify the origin of known contaminants found in the source water and predict contaminant level trends
 - Identify chemicals or contaminants used at or generated by facilities responsible for the known contamination
 - Identify all potential contaminant sources and determine the vulnerability of the water source to these contaminant sources
- 2. Full characterization of the raw water quality:

The appropriate level of monitoring and treatment to produce a safe drinking water cannot be determined unless the raw water quality is fully understood. The following categories should be considered to fully characterize the source water quality:

- Title 22 drinking water regulated and unregulated chemicals
- All chemicals for which drinking water action levels are established
- All chemicals listed pursuant to Safe Drinking Water and Toxic Enforcement Act of 1986
- Microbiological quality
- Priority pollutants
- Gross contaminant measures [total organic carbon (TOC), etc.]
- Any compounds identified under source water assessment.
- Determine variability of contaminant concentrations with time (seasonal and long term)
- Determine variability of contaminant concentrations with pumping rate.
- The detection of any contaminant identified in the raw water quality characterization (step 2) should require assessment of the impact on the source water pursuant to the source water assessment (step 1).
- 3. Source Protection:

There must be a program in place to control the level of contamination. At a minimum, best management practices for waste handling and waste reduction should be required. In addition, monitoring at the source should be conducted to determine the level of contamination

and to reasonable assure that the contamination level will not increase. Unless the level of contamination is known a determination cannot be made that the proposed treatment is sufficiently adequate and reliable to render the water potable.

If the use of an extremely impaired source is to be approved, the source of the contamination must be controlled to:

- Prevent the level of contamination from rising.
- Minimize the dependence on treatment.
- 4. Effective Monitoring and Treatment:

The treatment process used to treat the extremely impaired source prior to direct usage in a domestic water distribution system must be commensurate with the degree of risk associated with the contaminants present. As a minimum, treatment of extremely impaired sources shall include use of the best available treatment technology defined for the contaminant(s) by the Environmental Protection Agency. Furthermore, the treatment processes must have reliability features consistent with the type and degree of contamination.

All treatment processes used must be optimized to reliably produce water that contains the lowest concentration of contaminants feasible at all times. The entire flow from the extremely impaired source must pass through the complete treatment process or processes. Any water from other sources that is available for blending prior to entry into the distribution system should be used to provide an additional safety factor.

Multi-barrier treatment is a set of independent treatment processes placed in series, and designed and operated to reduce the levels of a contaminant. Each barrier should effectively reduce the contaminant by a significant fraction of the total required reduction. The treatment processes should address all the contaminants of public health concern in an extremely impaired source. Multi-barrier treatment may be appropriate when:

- The primary treatment is not sufficiently reliable;
- The primary treatment is of uncertain effectiveness;
- There is no direct way to measure the contaminant (e.g., pathogenic microorganism);
- The health effect of the contaminant is acute; and/or
- Very large reductions in contaminant concentration are required.

The description of the proposed monitoring and treatment should include the following:

- Performance standards (field measurable indicator of treatment efficiency);
 - o Identify level to assure compliance with the treatment objective
 - The treatment objective for all contaminants should be optimized to the lowest extent feasible and must assure compliance with the MCL/AL at all times.

Regional and District Engineers Page 5 November 5, 1997

- Facilities for treating water containing specific contaminants for which the MCL is higher than the maximum contaminant level goal (MCLG) should be designed and operated to meet the MCLG where this can be accomplished in a cost effective manner.
- Operations plan that identifies all operational procedures, failure response triggers, and loading rates, including:
 - Process monitoring plan
 - Process optimization procedures
 - Established water quality objectives or goals
 - o Level of operator qualification
- Reliability features
 - Response Plan for failure to meet the treatment objective
 - Alternative disposal methods
 - o Shutdown triggers and restart procedures
- Compliance monitoring and reporting program
- Notification plan
- Extremely impaired source water quality surveillance plan

The water quality surveillance plan should include monitoring between the origin of the contamination and the extremely impaired source that is proposed for drinking water.

5. Human Health Risks Associated with Failure of Proposed Treatment:

Treatment technologies are not failure proof, and insufficiently treated or untreated water may, on occasion, pass through the treatment process and into the distribution system. An assessment must be performed that includes:

• An evaluation of the risks of failure of the proposed treatment system.

The proposed treatment system must be evaluated in terms of its probability to fail, thereby exposing customers to insufficiently treated or untreated drinking water from the extremely impaired source.

All treatment failure modes are to be evaluated. The evaluation must include an assessment of the proposed frequency of monitoring as it relates to protection of the public from insufficiently treated or untreated drinking water.

• An assessment of potential health risks associated with failure of the proposed treatment system. The health assessment must take into account:

- the duration of exposure to contaminated drinking water that would result from such a failure
- the human health risks associated with such exposure to insufficiently treated or untreated water over the course of that failure, considering the risks of disease from microbiological organism, and the risks of acute and chronic effects (including cancer risks) from chemical contaminants
- o potential cumulative risks, due to multiple failures

When risks of adverse health effects from treatment failure are not acceptable, then additional treatment safeguards must be used for the protection of public health, or the proposal must be rejected.

6. Identification of alternatives to the use of the extremely impaired source and compare the potential health risk associated with these to the project's potential health risk.

Use of alternative sources of drinking water reasonably available to a water utility should be evaluated as to health risk (assuming MCLs are, or can be, met), and compared to the use of the extremely impaired source.

In evaluating the relative risk comparison of the extremely impaired source and alternative drinking water sources, additive effects of multiple contaminants are an important consideration. Generally, consideration of allowing direct potable use of an extremely impaired source should be limited to a single toxic contaminant or a limited number of similar chemicals that can be reliably treated with the same process.

The comparison of alternatives should include a comparison of the risks of treatment failure for the alternatives, as well as for the extremely impaired source (step 5).

7. Completion of the California Environmental Quality Act (CEQA) review of the project:

CEQA review of the project must be completed.

8. Submittal of a permit application:

The public water system(s) collecting, treating and distributing water from the extremely impaired source must submit a permit application for the use of the extremely impaired source that includes the items identified above. A supplier of treated water to a public water system is a water wholesaler and must be permitted as a public water system, as required by the Safe Drinking Water Act.

Regional and District Engineers Page 7 November 5, 1997

9. Public hearing:

A public hearing must be held to identify concerns of consumers who will be served water from the extremely impaired source and to assure that all parties have a chance to provide relevant information.

10. DHS evaluation:

DHS staff shall conduct an evaluation of the application and make recommendations.

11. Requirements for DHS approval:

The following findings are required of DHS for approval to use an extremely impaired source:

- Drinking water MCLs and Als will not be exceeded if the permit is complied with, and
- The potential for human health risk is minimized, and the risk associated with the project is less than or equal to the alternatives.

12. Issuance or denial of permit:

DHS either issues a permit or denies a permit for the use of the extremely impaired source. If a permit is issued, it shall include all necessary treatment, compliance monitoring, operational, and reporting requirements.

<Original signed by>

David P. Spath, Ph.D., P.E., Chief

Appendix J: Conceptualized Treatment Pre-Design and Cost Estimate for Extraction Well Alternative 3

Client Name:	South Tahoe Publi	c Utilities District	Date:	June 2, 2016
Project Title:	South Y Project		GEI Project No.:	1601030
Basis for Estimate:			Prepared By:	Mark Hargrove
X Conceptual	Feasibility	Preliminary	Checked By:	Ryan Alward
Final	Other	Enter "Other" description here		

Note: Estimate based on design level.

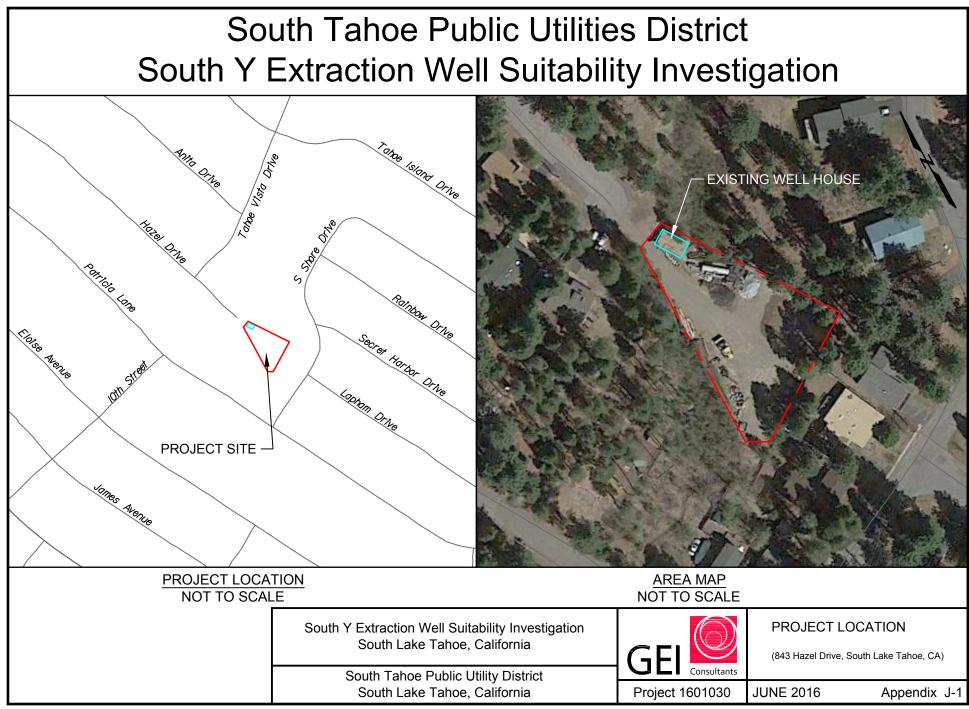
Γ

Item	Description	Quantity	Unit	Unit Price	Total
Constr	uction				
1	Mobilization/Demobilization	1	LS	\$82 <i>,</i> 456.36	\$82 <i>,</i> 456
2	Destroy Existing Well	1	LS	\$15,000.00	\$15,000
3	Demolish of Existing Site, Mechanical, and Electrical Facilities	1	LS	\$22,600.00	\$22,600
4	Construct New Well	1	LS	\$250,000.00	\$250,000
5	Furnish and Install New Prefab. Well Building	1	LS	\$14,800.00	\$14,800
6	Construct New Building Concrete Foundation	22	CY	\$775.54	\$17,062
7	Furnish and Install New 400 gpm Pump with 40 hp Submersible	1	EA	\$35,000.00	\$35,000
8	Furnish and Install Water Supply Discharge Piping and Valves	1	LS	\$3,700.00	\$3,700
9	Furnish and Install Pump-to-Waste Discharge Piping and Valves	1	LS	\$4,250.00	\$4,250
10	Furnish and Install Hydropneumatic Tank System	1	LS	\$25,000.00	\$25,000
11	Furnish and Install Chlorine Treatment System	1	LS	\$10,000.00	\$10,000
12	Furnish and Install Carbon Treatment System	1	LS	\$241,600.00	\$241,600
13	Construct Electrical and Instrumentation System	1	LS	\$70,000.00	\$70,000
14	Testing and Start-up	1	LS	\$8,000.00	\$8,000
Constr	ruction Subtotal =				\$799,468
Other	Construction Costs				
Unallo	cated Items			5%	\$39,973
Constr	ruction Total =				\$839,442
Other	Owner Costs				
Admin	istration and Legal			5%	\$41,972
Enviro	nmental Documentation and Permitting			12%	\$100,733
Engine	ering Design and Investigations			15%	\$125,916
Engine	ering During Construction			5%	\$41,972
Constr	uction Management			8%	\$67,155
Other	Owner Costs Subtotal =				\$377,749
Projec	t Subtotal =				\$1,217,190
Projec	t Contingency			50%	\$608,595
Proje	ct Total =				\$1,825,786

Notes:

1. O&M Costs are not included in this cost estimate.

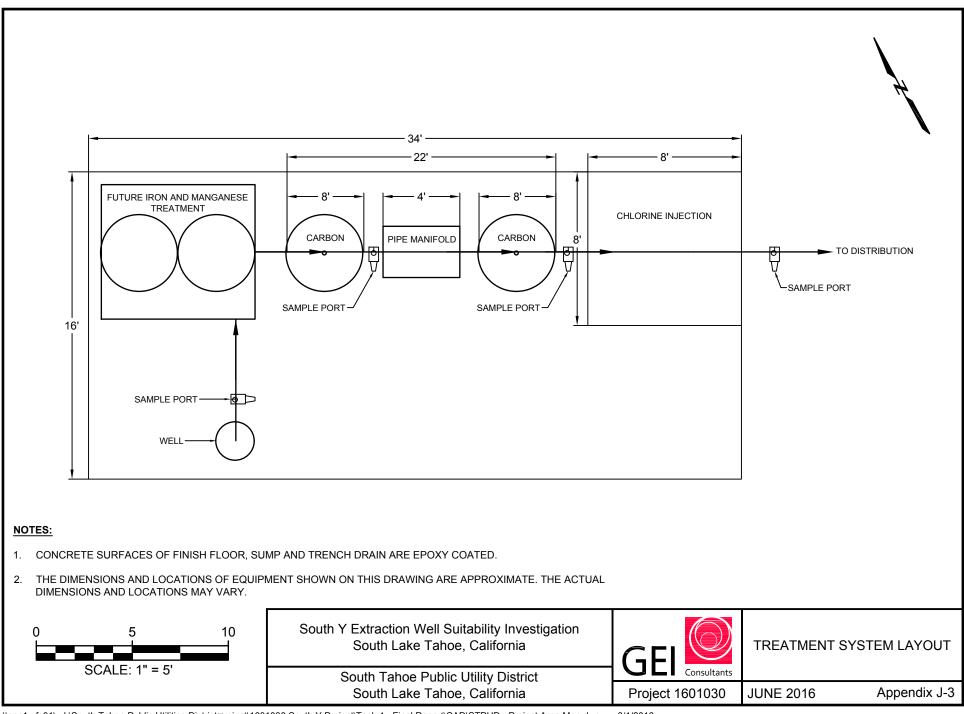
2. Project contingency is an upper estimate range for total project costs based on the design level.


GAC treating to non-detect (<0.5 µg/L)	Units	Usage	Carbon Usage Rate					
Media based on 100% utilization:								
Gallons treated	#GAC/1,000 gal	0.0357	714,000 gallons	s per exchange				
Usage per day	#GAC/day	26.7632	971 days betwe	een exchanges				
Usage per year	lbs/yr	9,769	2.66 years between exchanges					
GAC media costs	\$/lb	2.00	\$15,028.58 per year					
Labor & Sampling	Units	Unit Cost	Total Units	Cost				
Operator labor for daily site visits	\$/yr	30.00	110	3,300				
Labor for media replacements	\$/hr	30.00	12	360				
Increased sampling per year	VOC 524	75.00	36	2,700				
assuming three sample per	Quantitray	20.00	36	720				
parameter per month	HPC	30.00	36	1,080				
Total annual O&M costs	\$8,160							

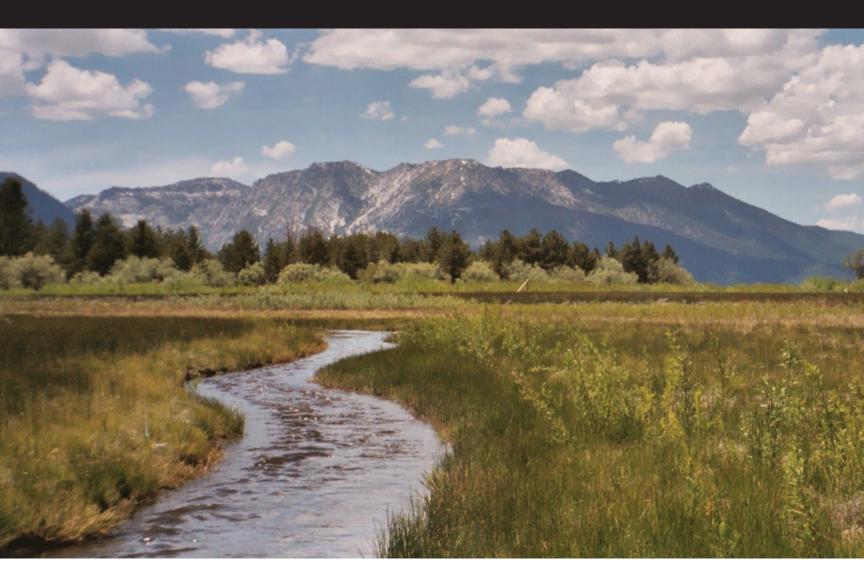
Operator labor rates are assumed at \$30 per hour including overhead costs.

The DDW typically requires daily site visits for groundwater treatment sites. A site visit will consist of recording station operation (flow rates, difference pressures, chlorine residual, etc.). These daily visits are estimated to take 15-20 minutes per day resulting in an annual total of 110 hours.

Labor costs for media replacement are estimated assuming one carbon vessel will be replaced per year and an operator will be present for 12 hours to support and oversee the operation.


Increased sampling per year is based on collecting a monthly sample from the well head, lead vessel and lag vessel. These sampling points will allow LBWC to monitoring breakthrough (lead vessel) and demonstrate compliance to the DDW (lag vessel). The increased bacteriological and heterotrophic plate count (HPC) monitoring is expected to be required by DDW since carbon fosters microbial growth.

\\sac1v-fs01\ J:\South Tahoe Public Utilities District roject\1601030 South Y Project\Task 4 - Final Report\CAD\STPUD - Project Area Map.dwg - 6/1/2016



\\sac1v-fs01\ J:\South Tahoe Public Utilities District roject\1601030 South Y Project\Task 4 - Final Report\CAD\STPUD - Project Area Map.dwg - 6/1/2016

\\sac1v-fs01\ J:\South Tahoe Public Utilities District⊡roject\1601030 South Y Project\Task 4 - Final Report\CAD\STPUD - Project Area Map.dwg - 6/1/2016

This page intentionally left blank.

FINAL REPORT

South Tahoe Public Utility District South Y Extraction Well Suitability Investigation June 29, 2016